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Abstract

This paper compares the �rst-price auction and the second-price auction

with several asymmetric bidders who are either weak or strong. The ranking of

these auctions in terms of pro�t may �ip as the exogenous reserve price or the

number of weak or strong bidders change. Similarly, with endogenous reserve

prices the ranking may depend on the seller�s own-use valuation. In other

words, the ranking may be fragile to changes along these dimensions. Existing

models rule out such ranking reversals by imposing substantial structure on type

distributions. The current paper relies on simple mechanism design arguments

that require less structure.
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1 Introduction

Starting with Vickrey�s (1961) seminal work, a central preoccupation of auction theory

has been to rank the e¢ ciency and pro�tability of di¤erent types of auctions. Vickrey

(1961) himself was �rst to identify asymmetry among bidders as a critical factor. To

this day, asymmetric auctions remain less than perfectly understood.

Vickrey (1961) demonstrated that there is no unambiguous pro�t ranking of the

�rst-price auction (FPA) and the second-price auction (SPA). In a well-known pa-

per, Maskin and Riley (2000) developed a few general principles for when the FPA

outperforms the SPA, and vice versa. However, they concentrated on auctions with

two bidders, one of whom is ex ante perceived as �strong�and the other as �weak�.

Kirkegaard (2012a) generalized Maskin and Riley�s (2000) insights using a mechanism

design approach. This literature centres on the role of bidders�type distributions.

Simply put, the lesson is that the pro�t ranking depends on the type distributions.1

However, the type distributions need not be the only consideration for the seller

when she contemplates di¤erent auction formats. How many weak and strong bidders

are at auction? Is the reserve price predetermined by e.g. government regulation and,

if so, at what level? On the other hand, if the reserve price is under the seller�s control

then she must, in order to determine the optimal reserve price, ask herself what her

own-use value of the object is in case it is not sold? Unlike previous papers, the

current paper focuses on the role of these parameters of the problem. Given the type

distributions, the primary objective is to examine whether the ranking of asymmetric

auctions is generally robust to changes in the parameters. This is essentially the

reverse of the exercise in Maskin and Riley (2000). They hold �xed the parameters

and ask whether the distributions matter.

As mentioned, Maskin and Riley (2000) assume there are exactly two bidders.

They also ignore reserve prices. Maskin and Riley (2000) and Kirkegaard (2012a)

set out to identify con�gurations of type distributions where auctions can be ranked.2

This necessitates the use of fairly demanding proof techniques. As noted by Kirkegaard

(2012a), these models are therefore heavily structured, and in fact so much so that

1This is a recurrent theme in auction theory. For a recent example, see Baisa and Burkett (2018)
who compare uniform-price auctions and discriminatory auctions with one large bidder and many
small bidders. See also Baisa and Burkett (2020).

2This is exempli�ed by Maskin and Riley�s (2000) �shift�and �stretch�models. These models are
special cases of those identi�ed in Kirkegaard (2012a). Cheng (2006) describes another con�guration
of distributions in which the FPA is superior.
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the pro�t ranking is unchanged when reserve prices are allowed and when more weak

bidders are present.3

This paper does not impose such rigid structure on the con�guration of type

distributions. Thus, it will be shown that there are con�gurations where the pro�t

ranking is sensitive to exogenous changes in reserve prices and the numbers of weak

and strong bidders. Second, endogenizing the reserve price and recognizing that it

depends on the seller�s own-use valuation likewise leads to the conclusion that the

ranking may also depend on the latter parameter.4

The research question is motivated by a large empirical literature on asymmetric

auctions. This literature generally lumps bidders into two groups. Campo, Perrigne,

and Vuong (2003) divide bidders into solo bidders and joint bidders. In De Silva,

Dunne, and Kosmopoulou (2003) bidders are either entrants or incumbents. The

bidders in Flambard and Perrigne�s (2006) study are located in one of two areas.

Brendstrup and Paarsch (2006) consider an application with major and minor bidders.

Likewise, in Marion (2007) and Krasnokutskaya and Seim (2011) bidders are classi�ed

as either large or small. Finally, Athey, Levin, and Seira (2011) put loggers and

sawmills in separate groups.5

Given the sparsity of theoretical results, the empirical literature is forced to resort

to numerical analysis in order to compare the performance of the observed auction

format to that of some counterfactual auction format. However, it is unclear how

robust the empirical �ndings are to changes in the parameters of the problem. The

practical signi�cance of the current paper is to highlight that the design question

should be revisited following any change in parameters. For instance, when bidders

are �rms in the same industry, a change in the industry structure may make it optimal

for the seller to switch auction format. Likewise, if the government�s opportunity

cost of timber is to use the forest as a carbon sink instead, increased environmental

awareness may cause the optimal reserve price to change in timber auctions, and with

it the ranking of di¤erent auctions formats.

3Maskin and Riley�s (2000) example in which the SPA is more pro�table than the FPA is also
robust to an arbitrary number of strong bidders. Kirkegaard (2012b) contains two examples in which
the FPA outperforms the SPA for an arbitrary number of weak and strong bidders.

4A related point is made by Doni and Menicucci (2013) in a two-bidder model with binary types.
They �nd that the FPA may be superior to the SPA without a reserve price. However, with optimal
reserve prices the SPA is weakly better than the FPA in their model.

5Even if bidders are ex ante symmetric, collusion among a subset of bidders e¤ectively create
asymmetries. See e.g Asker (2010) for a study of collusion in stamp auctions.
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Motivated by the above literature, this paper considers auctions with two groups

of bidders. Bidders in one group are strong compared to bidders in the other group

who are weak. Formally, this is captured by the standard assumption that one type

distribution dominates the other in terms of the reverse hazard rate.

There are two key assumptions that work in tandem to simplify the analysis.

First, it is assumed that there are at least two strong bidders at auction. This is

in contrast to much of the existing theoretical literature, such as Maskin and Riley

(2000) and Kirkegaard (2012a). In most of the auctions considered in the empirical

literature, however, there are more than one strong bidder present at auction. Hence,

the assumption in the current paper is empirically justi�ed.

The second key assumption is that the two type distributions do not have the same

support. The highest type of a strong bidder strictly exceeds the highest type of a

weak bidder. Then, there may exist a range of high bids that are only ever submitted

by strong bidders in equilibrium. The reason is that competition among the strong

bidders entice them to bid so aggressively that weak bidders cannot keep up. This

phenomenon is referred to as bid-separation.6 Note that bid-separation never occurs

with only one strong bidder. Although bid-separation may seem to complicate the

problem, the opposite is in fact that case. The core methodological insight is that bid-

separation may make it possible to apply elementary mechanism design techniques

that actually fail when there is only one strong bidder.

Following Myerson (1981), it is well understood that one auction is more pro�table

than another if it allocates the object to a bidder with a weakly higher �virtual

valuation�with probability one. It is this basic mechanism design result that will

be utilized here. This particular part of the approach is not claimed to be novel.

Nevertheless, as emphasized by Maskin and Riley (2000), the argument does not in

general have enough bite to compare the SPA and FPA. Thus, the novelty comes

from identifying an instrument that can be leveraged to invoke the simple argument.

To this end, the �rst observation is that the argument applies if bid-separation is

su¢ ciently pronounced. Then, strong bidders with high virtual valuations separate

away from weak bidders with mediocre virtual valuations. Thus, bid-separation may

constitute an opening into the problem, yet the degree of bid-separation is endogenous.

Thus, the second and key observation is that the incidence of bid-separation de-

6Note that bid-separation does not refer to the obvious property that bidding strategies are
di¤erent across bidders in the FPA. Rather, it refers to di¤erences in the ranges of equilibrium bids.
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pends on the size of the reserve price. In other words, the reserve price represents

a lever that can generate enough bid-separation in equilibrium to permit the use of

the fundamental mechanism design argument outlined above. Thus, a ranking can

be obtained for some, but not necessarily all, reserve prices.

Evidently, reserve prices play a pivotal role. To start, assume that the reserve

price is exogenous and the same for both auctions. Then, for any con�guration of

type distributions that satis�es the model�s sparse structure, there always exist some

reserve price for which the FPA is strictly more pro�table than the SPA. On the other

hand, it is easy to show that there are con�gurations where the SPA outperforms the

FPA for a subset of reserve prices. Hence, there are con�gurations in which the pro�t

ranking changes as the reserve price changes. The ranking may likewise change as

more bidders join the auction. A concrete example exhibiting these reversal properties

is provided. This appears to be the �rst such example in the literature.

When it is endogenous, the optimal reserve price depends on the type distributions

and the parameters as well as the auction format itself. The optimal reserve price in

either auction is low enough to permit the weak bidders a chance of winning when

neither the asymmetry between distributions or the seller�s own-use valuation is too

large. Then, the FPA with an optimal reserve price is strictly more pro�table than

the SPA with an optimal reserve price when there are su¢ ciently many bidders.

Similarly, for a �xed set of bidders, there are own-use valuations for which the FPA

outperforms the SPA when the reserve price is endogenized. This latter result is used

to show in another example that the pro�t ranking may �ip as the seller�s own-use

valuation changes. Together, the two examples thus demonstrate the economically

important point that pro�t rankings may be sensitive to the changes in parameters.

2 Model

Two groups of risk neutral bidders participate in a FPA or SPA. Bidders in the strong

group independently draw a valuation from the twice continuously di¤erentiable dis-

tribution function Fs(v), with support [vs; vs]. The density, fs(v), is assumed to be

strictly positive for all v 2 (vs; vs]. Note that mass points are ruled out. There are
a total of ms � 2 strong bidders. There are also mw � 1 weak bidders. These bid-
ders independently draw a valuation from another twice continuously di¤erentiable

distribution function Fw(v), v 2 [vw; vw]. Again, it is assumed that the density fw(v)
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is strictly positive for all v 2 (vw; vw]. Assume that vs > vw > vs � vw. Thus, the

supports overlap. Note that vs and vw may or may not coincide. However, the strict

inequality vs > vw is crucial to the key arguments.

Finally, it is assumed that Fs dominates Fw in terms of the reverse hazard rate,

Fw �rh Fs, or
fs(v)

Fs(v)
� fw(v)

Fw(v)
for all v 2 (vs; vw]: (1)

In other words, Fs(v)
Fw(v)

is non-decreasing on (vs; vw]. Hence, a strict version of �rst

order stochastic dominance applies since Fs(v) < Fw(v) for all v 2 (vs; vw]. A generic
member of the strong (weak) group is for simplicity referred to as bidder s (w). The

number and composition of bidders, i.e. ms and mw, are exogenous.

Together, the assumptions that there only two groups of bidders and that vs > vw
and Fw �rh Fs may seem restrictive. However, many of the paper�s results are

�negative�results that demonstrate that �robust�rankings are generally not possible.

The assumptions just mentioned are su¢ cient to establish this point. Moreover, as Li

and Riley (2007) argue, equilibrium behavior in a model with vs > vw is approximately

the same as in a model in which the support of Fw is extended to [vw; vs] but where

fw(v) is near-zero on (vw; vs]. Lebrun (2006) employs such an extension, but he allows

the density to be exactly zero.

The seller is also risk neutral. Her own-use valuation is denoted z. Thus, z

describes the utility that she obtains if the good is not sold, which may be the case

if the reserve price, r, is larger than vs. Here, z is exogenous. The reserve price may

be �xed or exogenous if the auction is subject to some government regulation but the

more interesting case is when the reserve price is endogenous and determined by the

seller. Both possibilities are analyzed, starting with the former. When r is exogenous

and the same across auctions, z is irrelevant for ranking the SPA and the FPA. In

this case, z is thus sometimes omitted from the description of the problem.

Following Cantillon (2008), the pair (Fs; Fw) will be referred to as the con�guration

of type distributions. In contrast, ms, mw, z, and �when it is exogenous �also r are

parameters of the problem. Together, the con�guration of type distributions and the

parameters de�ne the auction setting. Holding �xed the type distributions, the main

objective of the paper is to explore the robustness of the pro�t ranking to changes

in the parameters. It is already known from Vickrey (1961) and Maskin and Riley
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(2000) that the pro�t ranking may change when the type distributions change.7

Note that competition between strong bidders means that the price cannot fall

below vs. Hence, a reserve price below vs has no bite. Thus, it is without loss

of generality to consider reserve prices, r, that is no smaller than vs, or r � vs,

where the special case that r = vs is equivalent to the absence of a reserve price. The

reserve price is non-trivial when r > vs, in which case the good will remain unsold with

positive probability. Reserve prices above vw e¤ectively exclude weak bidders from the

auction. Thus, only strong bidders are active. Since active bidders are symmetric,

it follows from the Revenue Equivalence Theorem that the SPA and the FPA are

equally pro�table. Hence, reserve prices in the range [vs; vw) are more interesting.

However, the case where r = vs presents some technical di¢ culties. Consequently,

some of the following results focus on exogenous reserve prices in (vs; vw).

3 Equilibrium and comparative statics of the FPA

Lebrun (2006) characterizes equilibrium in the FPA under more general assumptions

than those stated above. He proves equilibrium is unique whenever r > vs. For any

r 2 [vs; vw], bidder i with type v � r submits a bid in the interval [r; bi], i = s; w.

Naturally, bs and bw are endogenously determined, with bs � bw. Thus, all bidders

submit bids in the same range if and only if bs = bw. This is the case in Maskin and

Riley (2000) where ms = mw = 1. If bs > bw in such a setting, the lone strong bidder

who is supposed to bid bs would pro�t by slightly lowering his bid since it would not

a¤ect his chances of winning. That argument breaks down as soon as ms � 2, as in
the current paper. In fact, the central arguments of the paper rely on the possibility

that bs > bw. The term bid-separation is henceforth used to refer to any equilibrium

in which bs > bw. The term is justi�ed by an analogy to signaling games: Any outside

observer who does not a priori know the identity of bidders will be able to infer that

any given bidder is strong if he submits a �separating�bid in the interval (bw; bs].

In equilibrium, there exists a unique threshold type, bv, such that bidder s with typebv bids bw in the FPA. Higher types separate away from weak bidders by bidding above
7An increase in r is similar to a change in the type distributions that leads more probability

mass to be concentrated at r. Even though it is known that the pro�t ranking is sensitive to certain
kinds of changes in type distributions, this does not on its own imply that the ranking is sensitive
to changes in r. After all, a change in r is a very speci�c kind of change. Similarly, a change in ms

or mw means that the distribution of the highest rival type changes in a very speci�c way.
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bw. In contrast, types below bv engage with weak bidders and may thus potentially
lose to a weak bidder. Note that bid-separation takes place if and only if bv < vs. It
follows from Lebrun�s (2006) equilibrium characterization that

bv = min�vs; ms

ms � 1
vw �

1

ms � 1
bw

�
:8 (2)

Now, since bw is bounded between r and vw, the above relationship proves formally

that bv converges to vw as r converges to vw. In other words, bid-separation must
occur when the reserve price is high enough and ms � 2. Note also that bv > vw for
any r < vw. Thus, a weak bidder with type vw outbids strong bidders with higher

types. In other words, he wins more often than is e¢ cient.

Given some endogenous (bv; bw), the challenge is to describe equilibrium behavior

at bids between r and bw, or characterizing the interaction between weak and strong

bidders with types below vw and bv, respectively. At bids above bw, the auction is
essentially a symmetric auction since only strong bidders have types that are active

there. Given (bv; bw), it is thus trivial to describe the bidding behavior of strong
bidders with types above bv; see Lebrun (2006) and Hubbard and Kirkegaard (2019).
Lebrun (2006) and Hubbard and Kirkegaard (2019) characterize equilibrium of

the FPA by describing inverse bidding strategies. However, from a mechanism design

perspective it is often more fruitful to characterize the equilibrium allocation instead.

Thus, as in Kirkegaard (2012a), the problem is reformulated. Consider a weak bidder

with type v � r. Let bw(v) denote his equilibrium bid. In equilibrium, this bid

equals the bid submitted by a strong bidder with some type k(v).9 Hence, the weak

bidder wins if and only if all the other weak bidders have types below v and all

the strong bidders have types below k(v). For bids below bw, equilibrium can thus

be characterized by describing the pair of (bw; k) functions instead of the pair of

inverse bidding functions. In either case, the endogenous functions solve a system of

di¤erential equations with appropriate boundary conditions and initial conditions. In

the formulation used here, the boundary conditions are that k(vw) = bv and bw(vw) =
bw. The initial conditions are described later. The relevant system of di¤erential

8See Hubbard and Kirkegaard (2019) for a more detailed discussion of bid-separation. They
assume bidders belong to one of two groups, without assuming reverse hazard rate dominance.
They also present several comparative statics results. However, they hold the reserve price �xed.

9Following Lebrun (2006), k(v) is unique when r > vs. There may be multiple equilibria when
r = vs but the results hold regardless of which equilibrium is selected in this case.
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equations is described in the beginning of Appendix A.

Equilibrium depends on the parameters (r;ms;mw) but not on the parameter z

which is irrelevant to bidders. Thus, I generally write the endogenous functions as

k(vjr;ms;mw) and bw(vjr;ms;mw), respectively, but make use of the shorter form

k(v) and bw(v) whenever no confusion arises as a result.

Note that a weak bidder with type v bids more aggressively than a strong bidder

with type v if and only if k(v) > v. Recall that k(vw) = bv > vw when r < vw. Indeed,
it is a standard result that reverse hazard rate dominance implies k(v) > v globally;

see e.g. Lebrun (1999) and Maskin and Riley (2000) for proofs of this result in various

settings. The following lemma proves that the property holds in the present setting.

Lemma 1 Assume r 2 [vs; vw). Then, k(v) > v for all v 2 (r; vw].

Proof. See Appendix A.
In order to examine the robustness of auction rankings with respect to the pa-

rameters of the problem, it is necessary to �rst understand how the allocation, or

k(vjr;ms;mw), depends on these. Consider �rst changes in the reserve price. The

easiest way to see that the allocation must change is to note that the �initial condi-

tions�to the system of di¤erential equations change. In particular, combining Lemma

1 and Lebrun�s (2006) analysis implies that bw(r) = r and k(r) = r, as explained in

the proof of Proposition 1. The �rst comparative statics result is a monotonicity

result. Speci�cally, k(v) is decreasing in r as illustrated in the left panel of Figure 1.

Proposition 1 Assume ms � 2, mw � 1. If vw > r0 > r � vs then

k(vjr0;ms;mw) < k(vjr;ms;mw) for all v 2 [r0; vw):

Proof. See Appendix A.
Consider a weak bidder with some type v 2 [r0; vw). When the reserve price

increases from r to r0, this bidder becomes less likely (Proposition 1) to outbid the

strong bidders and win the FPA. However, it is still the case that he wins more often

than is e¢ cient (Lemma 1). Increasing the number of bidders has a similar e¤ect.

Proposition 2 Assume m0
s > ms � 2, m0

w > mw � 1, r 2 (vs; vw), and vs > bv =
k(vwjr;ms;mw). Then,

k(vjr;m0
s;mw) < k(vjr;ms;mw) and k(vjr;m;m0

w) < k(vjr;ms;mw) for all v 2 (r; vw):
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Proof. See Appendix A.
The right panel of Figure 1 illustrates Proposition 2. This can also be thought

of as a monotonicity result. In particular, the auction becomes closer and closer

to e¢ cient the more bidders are participating in the auction. Any bidder responds

to the competition he faces. This competition consists of all the remaining bidders

in his own group and all the bidders in the other group. As the group sizes grow,

however, the di¤erence between the competition faced by a strong and a weak bidder

diminishes. Therefore, bidding strategies become more similar.

This result complements Swinkels�(1999, 2001) �nding that the FPA is asymptot-

ically e¢ cient. In other words, k(vjr;ms;mw) converges to v as the number of bidders

goes to in�nity. The implication that k(vjr;ms;mw) is not bounded away from v in

the limit is useful. For completeness, the next result states and proves this fact.

Proposition 3 Assume ms � 2, mw � 1, and r 2 [vs; vw). Then k(vjr;ms;mw)! v

for all v 2 (r; vw] as ms !1 or mw !1.

Proof. See Appendix A.
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Figure 1: (a) The left panel depicts how k(vjr;ms;mw) changes with r, given (ms;mw);

(b) The right panel shows how k(vjr;ms;mw) changes with (ms;mw).
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4 Ranking auctions for a subset of parameters

Building on Propositions 1�3, the purpose of this section is to rank the FPA and SPA

in terms of pro�t for a subset of the parameters r, ms, and mw. Speci�cally, for all

con�gurations of type distributions that satisfy the model�s assumptions, the FPA

yields higher expected pro�t than the SPA if the reserve price is relatively high or if

the number of bidders is large. These results will be used in later sections to show

that a reversal of the pro�t ranking is possible for some con�gurations.

4.1 A method to rank auctions

Myerson (1981) shows that expected revenue in any auction equals the expected value

of the winner�s virtual valuation.10 Bidder i�s virtual valuation is

Ji(v) = v �
1� Fi(v)
fi(v)

:

The comparative statics in the previous section are useful because they reveal how the

allocation in the FPA depends on the reserve price and the composition of bidders.

Let ERFPA(r;ms;mw) denote the expected revenue in the FPA given (r;ms;mw).

However, the seller cares about more than expected revenue since she earns utility of

z if the object is not sold. Thus, her expected payo¤ in the FPA is

�FPA(z; r;ms;mw) = zFs(r)
msFw(r)

mw + ERFPA(r;ms;mw):

The literature often assumes that z = 0. This is an innocent normalization if the

reserve price is exogenous. However, when the reserve price is endogenous, its optimal

value typically depends on z. Optimal reserve prices are examined Section 7. For

now, the reserve price is thought of as exogenous and the same across auctions. In

this case, the auctions are ranked the same way in terms of revenue and pro�t. More

generally, however, it is the pro�t ranking that matters to the seller.

Although there are multiple equilibria in the SPA, I focus on the equilibrium in

which bidders use the weakly dominant strategy of bidding truthfully. When it is sold,

the good is thus allocated to the bidder with the highest type. Let ERSPA(r;ms;mw)

10This statement is true whenever any bidder earns zero payo¤ when he has the lowest possible
type in his type support. That property holds here due to the assumptions thatms � 2 and vs � vw.
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and �SPA(z; r;ms;mw) denote the expected revenue and the expected payo¤ or pro�t

to the seller in the SPA, respectively.

Recall that the weak bidder with the highest valuation wins more often in the

FPA than in the SPA, since k(v) > v for v > r. Hence, as noted by Kirkegaard

(2012a), for a �xed reserve price, r 2 [vs; vw], the di¤erence in pro�t between the two
auctions is

�(r;ms;mw) = �FPA(z; r;ms;mw)� �SPA(z; r;ms;mw)

=

Z vw

r

 Z k(vjr;ms;mw)

v

(Jw(v)� Js(x)) dFs(x)ms

!
dFw(v)

mw : (3)

Intuitively, the inner integral in (3) captures the fact that when the most competitive

of the weak bidders wins in the FPA but not in the SPA it is because the most

competitive bidder in the strong group has a type above v but below k(v). As

mentioned earlier, if the reserve price is so high that weak bidders are excluded, or

r � vw, then the two auctions allocate the object in the same way. In this case the
SPA and FPA are equally pro�table, or �(r;ms;mw) = 0. Thus, in the remainder

of this section and the next two, it is assumed that r 2 [vs; vw). The possibility that
r � vw arises later when endogenous reserve prices are considered.
Expected pro�t in the FPA is strictly higher than expected pro�t in the SPA if

the parameters (r;ms;mw) belong to the set

P = f(r;ms;mw)jJw(v)�Js(x) > 0 for all x 2 [v; k(vjr;ms;mw)] and all v 2 (r; vw]g;

in which case each term in the inner integral in (3) is strictly positive. In this case,

when the allocation in the FPA di¤ers from the allocation in the SPA it is because

the item has been awarded to a bidder with a strictly higher virtual valuation.

However, Maskin and Riley (2000) point out that

Js(vs) > Jw(vw) > Js(vw): (4)

Hence, from a pro�t perspective it is desirable that the weak bidder with type vw
wins more often than is e¢ cient. However, he wins too often if he outbids strong

bidders with types close to vs. Note that this must necessarily occur if there is no

bid-separation, as is the case in any two-bidder model or more generally if ms = 1.
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Stated di¤erently, there is no (r;ms;mw) 2 P for which ms = 1. Thus, Maskin and

Riley (2000) conclude that �mechanism design considerations do not settle the matter

of which auction generates more revenue.�The innovation in Kirkegaard (2012a) is

based on the observation that what is important is not whether the winner�s virtual

valuation is no lower in the FPA than in the SPA with probability one, but rather

whether this is the case in expectation. Hence, he identi�es conditions under which

the inner integral in (3) is positive. However, Kirkegaard (2012a) explicitly makes

the point that his method may fail if there is more than one strong bidder.

4.2 Ranking auctions with large reserve prices

The possibility of bid-separation is a distinguishing feature of auctions with more than

one strong bidder. Bid-separation limits how often any weak bidders wins. Even if his

type is vw, he wins only if all strong bidders have types below bv. Since bv depends on
the reserve price, the idea is to use the latter as a lever to determine how often weak

bidders win. As a result, the winner�s virtual valuation in the FPA will be shown to

be no smaller than in the SPA for at least some reserve prices. In other words, there

are (r;ms;mw) 2 P with ms � 2. This is precisely the simple proof strategy that

Maskin and Riley (2000) note cannot work in two-bidder auctions. Thus, contrary to

what common intuition may suggest, auctions with several bidders may be easier to

handle than auctions with just two bidders.

Recall that bv = k(vw) converges to vw from above as r converges to vw from below.
In other words, for any v 2 (r; vw], k(vjr;ms;mw) can be made arbitrarily close to v

by gradually increasing r. At the same time, (4) implies that Jw(v) > Js(x) when v

and x are close to vw. Thus, as r increases towards vw, (r;ms;mw) 2 P. Hence, the
FPA outperforms the SPA when r is close enough to vw.

Intuitively, when r is close to vw any weak bidder that bids in the auction is

forced to pay close to his valuation in either auction. Hence, there is little room left to

increase his bid in the FPA. Thus, he is only capable of outbidding strong bidders with

slightly higher types. However, such types must have much lower virtual valuations.

In other words, if a weak bidder outbids a strong bidder in such circumstances then

the weak bidder is guaranteed to have a higher virtual valuation than the strong

bidder. Thus, the FPA discriminates in favor of the weak bidders, but not too much.

Proposition 4 Given ms � 2 and mw � 1, there exists an br 2 [vs; vw) such that
12



�(r;ms;mw) > 0 for all r 2 [br; vw).
Proposition 4 is a �local� result that requires minimal assumptions; it has been

assumed only that vs > vw and that reverse hazard rate dominance applies. Indeed,

it would be su¢ cient to assume that reverse hazard rate dominance applies �locally�

around vw, or, by continuity, that
fs(vw)
Fs(vw)

> fw(vw). Note that not even �rst order

stochastic dominance is required to hold.

Since it is a local result, Proposition 4 is silent on how large the range of reserve

prices is for which the FPA can be said to dominate the SPA. Example 2 in Section

5 provides an example in which this range can be characterized. However, the main

use of Proposition 4 lies in the fact that it presents just enough of a wedge to prove

in Section 5 that there are con�gurations of type distributions in which the pro�t

ranking �ips with changes in r because in such cases the SPA is more pro�table when

r is small. Hence, Proposition 4 is most de�nitely not a global result without further

restrictions on type distributions.

Appendix B extends Proposition 4 to the case with a single strong bidder, ms = 1.

Since bid-separation never arises in that case, arguments that are closer in spirit to

Kirkegaard (2012a) must be used. Appendix B also describes conditions that are

weaker than (r;ms;mw) 2 P, but which are still su¢ cient for �(r;ms;mw) > 0.

Finally, note also that Proposition 4 must hold if there are more than two groups

of bidders with di¤erent maximum types. After all, the analysis applies when the

reserve price is so high that it e¤ectively excludes all but two groups.

4.3 Ranking auctions with many bidders

Propositions 1 and 2 imply that (r;ms;mw) is more likely to belong to P the higher r,
ms, ormw are. The reason is that k(v) decreases, meaning that the strict inequality in

the de�nition of P must hold for fewer values of x (and fewer values of v if r increases
too). Intuitively, the auction becomes closer to symmetric as r, ms, or mw increases.

This means that it is less likely that a weak bidder outbids a strong bidder with a

higher virtual valuation in the FPA. Thus, when a weak bidder wins, it is because he

has the highest virtual valuation.

Proposition 5 Assume vw > r0 � r > vs, m0
s � ms � 2, and m0

w � mw � 1. Then,
(r0;m0

s;m
0
w) 2 P if (r;ms;mw) 2 P.

13



Proposition 5 implies that as the number of bidders increases, the set of reserve

prices for which the FPA can be proven to be preferable to the SPA weakly expands.

A stronger version can be obtained under the additional assumption that Fs strictly

dominates Fw in terms of the hazard rate, Fw <hr Fs, or

fs(v)

1� Fs(v)
<

fw(v)

1� Fw(v)
for all v 2 (vs; vw):

Note that Jw(v) > Js(v) for all v 2 (vs; vw]. Thus, it follows that (r;ms;mw) 2 P if
k(v) is su¢ ciently close to v for all v 2 (r; vw]. Invoking Propositions 2 and 3 then
imply that for any r 2 (vs; vw), the FPA is strictly more pro�table than the SPA

when su¢ ciently many bidders are participating in the auction.

Proposition 6 Assume Fw <hr Fs. Then, for any r 2 (vs; vw), (r;ms;mw) 2 P
when ms and/or mw is su¢ ciently large.

Hazard rate dominance is used only in Proposition 6 and one later result (Propo-

sition 8). Both deal with changes in the number of bidders, something that has gone

largely unexplored in the existing literature

5 Reversals of the pro�t ranking

Compared to much other work on ranking asymmetric auctions, the structure imposed

here is rather sparse. The con�guration of type distributions has so far been endowed

only with the following properties:

(i) Di¤erent maximal types; vw < vs.

(ii) Reverse hazard rate dominance; fs(v)
Fs(v)

� fw(v)
Fw(v)

for all v 2 (vs; vw].

Proposition 6 additionally assumes:

(iii) Strict hazard rate dominance; fs(v)
1�Fs(v) <

fw(v)
1�Fw(v) for all v 2 (vs; vw).

In Kirkegaard (2012a) and two of Maskin and Riley�s (2000) con�gurations, (i) and

(ii) are imposed together with a stronger version of (iii). As explained in Kirkegaard

(2012a), their assumptions are strong enough to guarantee that the FPA outperforms

14



the SPA for all reserve prices in the two-bidder case and indeed whenever mw � 1 as
long as ms = 1. Maskin and Riley (2000) describe a third con�guration in which the

SPA outperforms the FPA under the assumption that there are two bidders and no

reserve price. However, their logic extends to any reserve price and any number of

bidders. In that example, the inequalities in (i) and (iii) are replaced by equalities.

In summary, all these con�gurations are characterized by pro�t rankings that are

robust to changes in parameters. The following two examples illustrate that there are

con�gurations for which the ranking is fragile. The �rst example is constructive and

explains how to generate con�gurations in which the pro�t ranking may �ip. The

second example provides a more concrete illustration.

Example 1 (Ranking Reversals): As a preliminary thought experiment, assume

that Fs(v) is obtained by truncating Fw on the left, such that

Fs(v) =
Fw(v)� Fw(vs)
1� Fw(vs)

, v 2 [vs; vw]

for some truncation point vs 2 (vw; vw). It is easy to see that
Fs(v)
Fw(v)

is strictly increasing

on v 2 (vs; vw]. That is, reverse hazard rate dominance applies. However, contrary
to the main model, vw = vs. It also holds that Jw(v) = Js(v) for all v 2 [vs; vw].
Finally, assume that Jw(v) and Js(v) are strictly increasing in v. Then, the e¢ cient

SPA allocates the good optimally whenever it is sold. In the FPA, bid-separation

does not arise in equilibrium since vw = vs. However, due to reverse hazard rate

dominance it must hold that k(v) > v for all v 2 (r; vw), for any r 2 [vs; vw). Thus,
weak bidders win more often than is e¢ cient. Hence, the SPA strictly outperforms

the FPA. Maskin and Riley�s (2000) example that demonstrates the SPA may be

more pro�table than the FPA is based on the same logic.

Now perturb the model. Speci�cally, �stretch� Fs from the support [vs; vw] to

the support [vs; vw + "], where " > 0 is small. The new, perturbed, distribution Hs
satis�es Hs(v) = �Fs(v) for all v 2 [vs; vw] for some � > 0 that is strictly smaller

than one but very close to one. The reverse hazard rate is una¤ected on [vs; vw] and

so it still holds that Hs strictly reverse hazard rate dominates Fw. However, it is now

the case that vw < vw + " = vs and Jw(v) > Js(v) for all v 2 [vs; vw]. Hence, the
perturbed model satis�es all the assumptions required for the previous analysis. Fix

some r 2 [vs; vw) and some ms � 2, mw � 1. By continuity (see Lebrun (2002)),

if " is close enough to zero and � close enough to one then it must still hold that
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the SPA outperforms the FPA. Now increase the reserve price. As the reserve price

approaches vw, Proposition 4 comes into e¤ect and the ranking thus �ips.

In conclusion, the SPA outperforms the FPA when the reserve price is low enough,

whereas the FPA outperforms the SPA when the reserve price is high enough. Simi-

larly, holding r �xed, the SPA outperforms the FPA with the original set of bidders.

However, by Proposition 6, the FPA will eventually come to dominate the SPA as

the number of bidders increases. I am aware of no other work that has demonstrated

either of these ranking reversal properties before. N

Example 2 (Uniform Distributions with Two Bidders): Assume now that

Fw and Fs are uniform distributions and that ms = mw = 1. As mentioned, Ap-

pendix B extends Proposition 4 to the case where ms = 1. The advantage of the

assumption that ms = mw = 1 is that it makes it possible to invoke Kaplan and

Zamir�s (2012) analytical characterization of inverse bidding strategies, which in turn

makes it possible to evaluate expected revenue for any r. To continue, assume that

vw = 0 and vw = 100 but let vs 2 (0; 100) and vs > 100 vary. Figure 2(a) summarizes
the conclusions from the resulting revenue ranking exercise. At any point on or below

the curve, the SPA is more pro�table than the FPA for a subset of reserve prices.

Note that this occurs when vs is su¢ ciently small, which is consistent with the con-

clusion in Example 1 for ms � 2. In all cases, the higher the reserve price, the less
likely it is that the SPA outperforms the FPA. This is consistent with Proposition 4

which implies that the FPA must outperform the SPA when the reserve price is high

enough. Figure 2(b) depicts the percentage gain in moving from the SPA to the FPA

as a function of r when vs = 40 and vs = 105.

The revenue di¤erences in Figure 2(b) are small. The reason is that neither

distribution have any curvature and that vs is close to vw. Hence, the two bidders are

in a sense not �too asymmetric.�In Figure 2(a), the SPA is never more than 1.36%

better than the FPA. As vs increases, however, the FPA becomes increasingly more

pro�table relative to the SPA. For instance, if vs = 150 and r = vs = 30, then the

FPA yields 5.52% higher pro�t than the SPA. If vs = 200, this number increases to

12.19%. These magnitudes are not unusual in the literature. Li and Riley (2007)

solve for bidding strategies numerically and presents a number of examples with six

asymmetric bidders. In their examples, when the SPA outperforms the FPA is does

so by a small margin. On the other hand, when the FPA outperforms the SPA, there

is more variability in how much better the FPA is. However, an improvement of
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5-10% is not unusual, even with six bidders.

In the setting in Figure 2(b), expected revenue in the FPA ranges from 52:06 at

r = vs = 40 up to a maximum of 53:37 at r = 52:66 and down to 7:69 at r = vw = 100.

Hence, setting the reserve price too high can be very costly, whereas a reserve price

that is too low is less damaging to expected revenue. Reserve prices are endogenized

in Section 7. N
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Figure 2: (a) The left panel summarizes ranking results for varying (vs; vs); (b) The

right panel shows the percentage gain in using the FPA when vs = 40 and vs = 105.

6 The role of the type distributions

As an interlude before turning to endogenous reserve prices, it is useful to develop a

way to di¤erentiate between various con�gurations of type distributions. This section

provides a way of describing or parameterizing the degree of asymmetry between the

two groups of bidders. Recall that vs 6= vw is instrumental to the proof strategy.

Holding Fw(v) and vw �xed, the idea is to use vs to parameterize the strong bidders�

distribution.

Consider some twice continuously di¤erentiable function, G(v), de�ned for all

v � vs. Assume that G(vs) = 0 and that the derivative, g(v), is strictly positive for
any v > vs. For any vs � vw, let

Fs(vjvs) =
G(v)

G(vs)
, for all v 2 [vs; vs] , (5)

17



and note that
fs(vjvs)
Fs(vjvs)

=
g(v)

G(v)
, for all v 2 [vs; vs] ,

is independent of vs. Finally, assume that

g(v)

G(v)
� fw(v)

Fw(v)
, for all v 2 (vs; vw]: (6)

Hence, Fs dominates Fw in terms of the reverse hazard rate for any vs > vw. Note

that the two distributions may coincide in the limit where vs ! vw. Moreover, this

formulation is without loss of generality. That is, for any �xed Fw and vs, any Fs
that satis�es the assumptions in Section 2 can be written as (5) and must satisfy (6).

Adapting Maskin and Riley�s (2000) terminology, increases in vs amounts to

�stretching� the distribution. This is precisely the kind of change that occurred

in Example 1. Note that the strong groups�virtual valuation,

Js(vjvs) = v �
1� Fs(vjvs)
fs(vjvs)

= v � G(vs)�G(v)
g(v)

is strictly decreasing in vs. Hence, it becomes more pro�table to discriminate against

strong bidders in favor of weak bidders when vs increases. This already suggests that

the FPA is more likely to be more pro�table than the SPA as vs grows.

Next, assume that bv < vs for some �xed vs value. Thus, bid-separation occurs.

Stretching Fs entails adding more high types to the strong bidders�type space. It

is not surprising that these new types will also separate away from weak bidders by

bidding above bw. In fact, bidding behavior for existing types do not change.11 That

is, k(vjr;ms;mw) is unchanged as vs increases. Hence, the allocation does not change

for a given type pro�le. Moreover, the di¤erence in pro�t between the FPA and SPA

can now be written as

�(r;ms;mwjvs) =
1

G(vs)ms

Z vw

r

 Z k(vjr;ms;mw)

v

(Jw(v)� Js(xjvs)) dG(x)ms

!
dFw(v)

mw :

The factor before the integral is irrelevant for the sign of �(r;ms;mwjvs). The terms
under the integral increase with vs. Hence, if �(r;ms;mwjvs) is positive, then it

11Technically, the reason is that the reverse hazard rate is unchanged when Fs is stretched. The
system of di¤erential equations in the common bid range is then unchanged as well.
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remains positive as vs increases. This implies that as the degree of asymmetry in-

creases, the FPA can be proven to be superior to the SPA for more and more pa-

rameters (r;ms;mw).12 This is consistent with Figure 2(a) in Example 2, where the

FPA unambiguously outperforms the SPA when vs is large enough.

Proposition 7 Fix r 2 (vs; vw). If bv < vs and �(r;ms;mwjvs) > 0 then these

properties also hold as vs increases.

7 Endogenous reserve prices

The reserve price is now endogenized. It is assumed that the seller chooses r with

the objective of maximizing expected pro�t. The exogenous parameters of the model

are now z, ms, and mw. Let rSPA(z;ms;mw) denote the optimal reserve price in

the SPA for a seller with own-use value z. If the optimal reserve price is not unique,

then rSPA(z;ms;mw) denotes the smallest optimal reserve price. Let rFPA(z;ms;mw)

denote any optimal reserve price in the FPA. With some abuse of notation, I write

rSPA(z) and rFPA(z) whenever the number of bidders is understood to be �xed.

In either auction, the seller is pursuing one of two strategies. Speci�cally, she

is either attempting to pro�t from both groups of bidders by accommodating weak

bidders with a reserve price below vw, or she is focusing on extracting as much rent

as possible from strong bidders by using a reserve price that is prohibitive for weak

bidders. In the latter case, the two auctions are revenue equivalent since only one

group of bidders is involved. This is optimal when the strong group is much stronger

than the weak group, or, roughly speaking, when the asymmetry is su¢ ciently large.

Thus, this section concentrates on settings where the asymmetry is in some sense not

too large.

The �rst subsection considers the role of the number of bidders, while the second

examines the role of z. The third subsection proves that there are con�gurations of

type distributions where the pro�tability ranking �ips as z changes. The companion

paper, Kirkegaard (2020), complements this paper by establishing that the optimal

reserve price in the FPA is sometimes below the optimal reserve price in the SPA. As

a consequence, the FPA is more likely to realize gains from trade. With endogenous

reserve prices, the FPA may therefore ultimately be more e¢ cient than the SPA.
12On the other hand, reserve prices above vw become more pro�table too. This is one of the

reasons that endogenizing the reserve price is more challenging. See Section 7.
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7.1 Ranking auctions with many bidders

Recall that Jw(vw) = vw > 0. Assume in this subsection that Js(v) � 0 for all v 2
[vw; vs]. One interpretation of the assumption is that the asymmetry between bidders

is not too large. Assume moreover that z is small enough that 0 � z � Js(v) for all
v 2 [vw; vs]. These assumptions are easily veri�ed to imply that �SPA(z; r;ms;mw)

and �FPA(z; r;ms;mw) are non-increasing in r for r � vw (recall that the auctions

are equally pro�table for r � vw). In fact, the optimal reserve price in either auction
is strictly below vw.

Assume moreover that Fw <hr Fs, so that Proposition 6 can be invoked. Thus,

the FPA is strictly better than the SPA for all non-prohibitive reserve prices when

there are enough bidders present. Hence, the FPA must also be strictly better than

the SPA when the reserve price is endogenous and allowed to vary with the auction

format.

Proposition 8 Assume Fw <hr Fs and that 0 � z � Js(v) for all v 2 [vw; vs]. Then,

�FPA(z; rFPA(z;ms;mw);ms;mw) > �
SPA(z; rSPA(z;ms;mw);ms;mw)

when ms and/or mw is su¢ ciently large. Thus, the SPA is not weakly more pro�table

than the FPA for all (ms;mw).

Proof. See Appendix A.
The logic behind Proposition 8 is that the FPA is �almost�e¢ cient when there

are many bidders and so (r;ms;mw) 2 P for any r that is a candidate for an optimal
reserve price in the SPA, given Fw <hr Fs. However, since the FPA is �almost�

e¢ cient, it also produces �almost�the same allocations as the SPA. Hence, the two

auctions are unlikely to di¤er much in terms of expected pro�t when there are many

bidders at auction.

In summary, the message is not that the FPA always outperforms the SPA, al-

though that is sometimes the case. Instead, the message is that the SPA cannot

always dominate the FPA; any claim to the contrary is more fragile.

7.2 The role of own-use valuations

Proposition 8 implies that there is a whole range of own-use valuations for which

the FPA strictly outperforms the SPA for some large enough (ms;mw). A partial
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converse is pursued in this subsection. Thus, the aim is to examine whether for any

(ms;mw) � (2; 1), there exists some parameter value of z such that the FPA strictly
outperforms the SPA with endogenous reserve prices. Stated di¤erently, a counterpart

to Proposition 4 that now allows for endogenous reserve prices is sought.

Unfortunately, a non-trivial issue arises when the reserve price is endogenized.

First, to ensure that (rSPA(z);ms;mw) 2 P it is necessary that rSPA(z) is �high

enough�, which generally requires z to be large. However, if z is too large, then it

is no longer the case that rSPA(z) < vw. Intuitively, rSPA(z) is typically increasing

in z because higher z implies that the seller is happier to retain the object. The

problem, however, is that as z increases, rSPA may discontinuously jump from some

value strictly below vw to some value strictly above vw. The reason is again that

the seller jumps from accommodating both groups of bidders to just concentrating

on extracting as much rent as possible from the strong bidders. As z increases, the

seller switches from the former to the latter approach. Consequently, there are reserve

prices close to vw that can never be rationalized in a SPA, regardless of z. Thus, it is

hard in general to establish the existence of a z for which (rSPA(z);ms;mw) 2 P.
To overcome this technical di¢ culty I return to the formulation of the model

presented in Section 6. Starting from vs = vw, it is then possible to consider con�g-

urations of type distributions with �small asymmetries�, or, more formally, con�gu-

rations in which vs is marginally above vw.13 Recall that Example 1 �ts this model.

In this setting, it can be proven that there are own-use valuations for which the FPA

strictly outperforms the SPA with endogenous reserve prices.

Proposition 9 Assume that Fs(�jvs) and Fw(�) satisfy (5)�(6). Then, there is some
v0s > vw such that for any vs 2 (vw; v0s) there exists an own-use valuation z for which

�FPA(z; rFPA(z;ms;mw);ms;mw) > �
SPA(z; rSPA(z;ms;mw);ms;mw)

for all ms � 2, mw � 1.

Proof. See Appendix A.
Example 4 in the next subsection quanti�es the range of z values for which the

FPA outperforms the SPA.

13Note that a �small asymmetry�refers only to a small distance between vs and vw. It is possible
that Fs(v) and Fw(v) are �far apart�on (vs; vw].
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7.3 Reversals of the pro�tability ranking

Assuming reserve prices are the same for both auction formats, Examples 1 and 2

demonstrated that the pro�t ranking may �ip with a change in the exogenous reserve

price. However, when it is endogenous, the optimal reserve price generally di¤ers

across auctions. The next examples strengthens the conclusion of Examples 1 and 2

by showing that the pro�t ranking, even when allowing for endogenous reserve prices,

may also �ip as the seller�s own-use valuation changes.

Example 3 (Sensitivity to the seller�s own-use valuation): Return to

the set-up at the beginning of Example 1 where Fs is obtained by truncating Fw on

the left, such that vs initially coincides with vw. As mentioned, it then holds that

Jw(v) = Js(v) for all v 2 [vs; vw]. Assume that Jw(vs) � 0 and let z = Jw(vs) to

begin. Finally, assume that virtual valuations are strictly increasing. It is easy to

see that the optimal reserve price in the SPA is rSPA(z) = vs and that the SPA

implements the optimal auction. Thus,

�SPA(z; rSPA(z;ms;mw);ms;mw) > �
FPA(z; rFPA(z;ms;mw);ms;mw):

By continuity, a small perturbation of Fs, obtained by marginally increasing vs, cannot

change this ranking when z is held �xed at z = Jw(vs). However, Proposition 9 proves

that there must be some other z for which the FPA is strictly more pro�table than

the SPA with endogenous reserve prices. N

Example 4 (Uniform Distributions with Two Bidders): Consider the setting

in Example 2, but assume now for concreteness that vs = 40. In the following, it is vs
and z that are varied. Thus, the auction problem is solved for any (z; vs) combination.

Figure 3(a) summarizes the �ndings. The SPA is more pro�table than the FPA when

vs and z are small. However, the FPA is more pro�table when vs is large or z is in

an intermediate range. Finally, if z is very large then it is optimal to set a reserve

price above vw, in which case the two auctions are revenue equivalent.

In either auction, a small reserve price is optimal when z is small. Although the

optimal reserve price is slightly di¤erent in the SPA and the FPA, this is not enough

to overturn the conclusion from Figure 2(a) that the SPA is more pro�table than the

FPA when vs is small. However, as z increases, small reserve prices are no longer

optimal in either auction. This means that the SPA cannot outperform the FPA.

22



The FPA is thus strictly better for a range of own-use valuations. Eventually, as z

becomes large enough, it is better to exclude the weak bidder and the SPA and FPA

are then equally pro�table. N

Examples 3 and 4 establishes that the seller�s own-use valuation may be crucial

even when selecting among simple auction formats like the SPA and the FPA. This

fact represents a challenge to the applied literature where the seller�s own-use valu-

ation need not be known. It can perhaps be argued that z can be inferred from the

observed reserve price that the seller is using in the real world. Even given this op-

timistic premise, however, it may be impossible for the econometrician to determine

whether the auction currently in use should be replaced with the alternative auction

format. The reason is that the optimal reserve price in the counterfactual auction

may be below that used in the real auction. The problem is that the bid data is

necessarily truncated by the current reserve price. Thus, the econometrician does not

necessarily have access to data that would allow him to calculate optimal pro�t in

the counterfactual auction.
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Figure 3: Optimal auction choice with endogenous reserve prices.

8 Conclusion

Progress on ranking the pro�t of di¤erent auctions in the presence of asymmetries

has been slow. This paper cautions that a robust ranking cannot be obtained for all

con�gurations of type distributions. Parameters such as reserve prices, the number of
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bidders, and the seller�s own-use valuation may in�uence the ranking. By extension,

the paper puts a renewed emphasis on the seller�s own-use valuation. It may play

a more central role in selecting the best auction format than suggested by existing

theory.

These results suggest some caution is prudent when interpreting various �ndings

in the empirical literature. When conducting the counterfactual analysis described

in the introduction, it is rare that changes in the reserve price are examined as well.

Since the pro�t ranking may be sensitive to the reserve price, it may be worthwhile

to augment counterfactual studies with a robustness check along this dimension of

auction design. More problematically, the best design may depend on the seller�s

own-use valuation, which is less likely to be known.

The model assumes participation is exogenous, yet it is not without implications

for the issue of entry. The value of attracting more participation is well-recognized;

see e.g. Bulow and Klemperer (1996). As the pro�t ranking may also depend on the

composition of bidders, any steps taken to encourage entry should at the very least

be accompanied by an examination of whether a change in auction design at the same

time is called for.

The basic intuition also carries over to auctions with multiple identical units in

which each bidder demands only a single unit. Then, bid-separation may arise in the

discriminatory auction whenever there are more strong bidders than units. Therefore,

the logic that led to Proposition 4 still applies. Thus, there are reserve prices for which

the discriminatory auction is more pro�table than any e¢ cient auction.
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Appendix A: Omitted proofs

Describing the problem: For completeness, I �rst outline both formulations of the
problem. To begin, let 'i(b) denote bidder i�s inverse bidding strategy, b 2

�
r; bi
�
,

i = s; w. On the range of bids where both groups of bidders are active,
�
r; bw

�
, 'w(b)

and 's(b) solve the system of di¤erential equations described by

d

db
lnFi('i(b)) =

1

ms +mw � 1

�
mj

'j(b)� b
� mj � 1
'i(b)� b

�
; (7)

i; j = s; w, i 6= j, with boundary conditions 'w(bw) = vw and 's(bw) = bv. Note that
if bv < vs, then '0w(bw) = 0, by (2). Lebrun (2006) proves that '0i(b) > 0 for all interior
bids, however.

Second, consider the formulation of the problem in terms bw(v) and k(v). If his

type is v, a weak bidder�s problem can be thought of as deciding which type, x, to

mimic. His problem is thus to maximize

(v � bw(x))Fs(k(x))msFw(x)
mw�1:

Similarly, a strong bidder with type k(v) who bids in the common range maximizes

(k(v)� bw(x))Fs(k(x))ms�1Fw(x)
mw :

By de�nition of equilibrium, bidders� payo¤s are maximized when x = v. When

v 2 (r; vw), the �rst order conditions yield the system of di¤erential equations

k0(v) =
Fs(k(v))

fs(k(v))

fw(v)

Fw(v)
T (k(v); bw(v); v)

b0w(v) =
fw(v)

Fw(v)
(k(v)� bw(v)) [(ms � 1)T (k(v); bw(v); v) +mw] ; (8)

where

T (k; bw; v) =
mw

k�bw
v�bw � (mw � 1)

ms � (ms � 1)k�bwv�bw

To compare this formulation of the problem with the previous one, the boundary

conditions are that k(vw) = bv and bw(vw) = bw.14 Note that T (k; bw; v) R 1 if and

14In equilibrium, k0(v) > 0 and b0w(v) > 0. Note, however, that if bv < vs then T (k(v); bw(v); v)
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only if k R v. Likewise, holding bw and v �xed, T (k; bw; v) is strictly increasing in k.
It also holds that @T (k;bw;v)

@bw
R 0 if and only if k R v. These properties will be used

repeatedly. N

Proof of Lemma 1. Given these preliminaries it is now possible to prove Lemma 1.

Recall that k(vw) > vw. To illustrate the proof idea, assume �rst that the inequality

in (1) is strict. Assume there exists some v0 2 (r; vw] for which k(v0) = v0. Since

T = 1 at such a point,

k0(v0) =
Fs(v0)

fs(v0)

fw(v0)

Fw(v0)
< 1:

Thus, increasing v beyond v0 leads to the conclusion that k(v) � v. However, this

contradicts the equilibrium feature that k(vw) > vw. The idea is the same when the

inequality in (1) is weak. More formally, assume once again that there exists some

v0 2 (r; vw) for which k(v0) = v0. Based on this �initial condition�, the next step is to
obtain the solution to the system of di¤erential equations as v increases beyond v0 (the

solution to this initial value problem is unique given the di¤erentiability assumptions

imposed on the primitives). To begin, the guess is made that the solution satis�es

k(v) � v for all v � v0. Then, T � 1, and it follows that

d

dv
lnFs(k(v)) =

fs(k(v))

Fs(k(v))
k0(v) � fw(v)

Fw(v)
=
d

dv
lnFw(v);

or
d

dv
ln
Fs(k(v))

Fw(v)
� 0

independently of bw(v). By Gronwall�s inequality, the actual solution is then bounded

above by the solution that would be obtained if the above inequality had been replaced

by an equality, in which case ln Fs(k(v))
Fw(v)

would be constant. Hence, using the initial

condition that k(v0) = v0,

ln
Fs(k(v))

Fw(v)
� ln Fs(v0)

Fw(v0)
: (9)

However, since v � v0 reverse hazard rate dominance implies that

Fs(v)

Fw(v)
� Fs(v0)

Fw(v0)
;

goes to in�nity as v approaches vs, by (2).
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and so (9) necessitates that k(v) � v. Thus, the initial guess that k(v) � v for all

v � v0 when k(v0) = v0 is veri�ed. The proof is then completed in the same manner
as before. In particular, the implication that k(vw) � vw violates the equilibrium

property that k(vw) > vw. Hence, there can be no v0 2 (r; vw) for which k(v0) = v0.
By continuity, it then follows that k(v) > v for all v 2 (r; vw].

Proof of Proposition 1. I �rst establish that the initial conditions are that

bw(r) = r and k(r) = r. Lebrun (2006) shows that in general 'i(r) = r for all but

at most one bidder i; see his conditions (20) and (200) along with his discussion on

page 143. Stated di¤erently, it is possible that 'i(r) > r for exactly one bidder, such

that bidder i has a mass of types that bids r. However, since strategies within any

given group is symmetric and ms � 2, no strong bidder can bid r for a mass of types.
The same holds for weak bidders if mw � 2. This leaves the case where mw = 1.

Compared to Lebrun (2006), however, here it is assumed that reverse hazard rate

dominance applies. By Lemma 1, the weak bidder is more aggressive than the strong

bidders, for comparable types. Thus, the weak bidder cannot, in equilibrium, be

bidding r for a mass of types. In short, it must hold that 'i(r) = r for all bidders in

the current model. Equivalently, the initial conditions to the system in (8) are that

k(r) = r and bw(r) = r.

Let bv denote the strong bidders�cut-o¤ type and bw the weak bidders�maximum
bid when the reserve price is r. Let bv0 and b0w denote their counterparts when the
reserve price increases to r0. Note �rst that if bw = b

0
w then bv = bv0, by (2). The

system of di¤erential equations are then characterized by the same boundary condi-

tions regardless of whether the reserve price is r or r0. Thus, the system is the same

on b 2 (r0; bw] in either case. Given the di¤erentiability assumptions imposed on the
primitives, the unique solution to the two problems must then coincide on b 2 (r0; bw].
Hence, in the limit, bw(r0jr0) = bw(r0jr). However, the initial conditions when the re-
serve price is r0 requires bw(r0jr0) = r0, whereas equilibrium bidding when the reserve

price is r < r0 satis�es bw(r0jr) < r0. This contradicts the previous conclusion that

bw(r
0jr0) = bw(r0jr). Thus, in equilibrium, bw 6= b

0
w.

Consider next the possibility that bw > b
0
w, implying that bv0 � bv, by (2). Assume

�rst that bv0 > bv. Hence, for v close to vw, k(vjr0) is strictly above k(vjr) while bw(vjr0)
is strictly below bw(vjr), or k(vwjr0) = bv0 > bv = k(vwjr) and bw(vwjr0) = b0w < bw =
bw(vwjr). Reducing v from vw, �nd the nearest value, v0, (if one exists) where one

of the new endogenous functions crosses its old counterpart. The argument in the
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previous paragraph rules out that k(v0jr0) = k(v0jr) and bw(v0jr0) = bw(v
0jr) at the

same time. There are two remaining cases. Assume bw(v0jr0) = bw(v0jr) but k(v0jr0) >
k(v0jr). Then, from (8), b0w(v

0jr0) > b0w(v0jr). This contradicts that bw(vjr0) < bw(vjr)
for v > v0. Assume instead that k(v0jr0) = k(v0jr) but bw(v0jr0) < bw(v

0jr). Then,
again from (8), k0(v0jr0) < k0(v0jr) if k(v0jr0) = k(v0jr) > v0. However, this contradicts
that k(vjr0) > k(vjr) for v > v0.
Next, assume that bw > b

0
w but that bv0 = bv. This necessitates bv0 = bv = vs. It can

now be seen that k(vjr) is steeper than k(vjr0) near vw. Hence, k(vjr0) > k(vjr) for v
close to, but strictly below, vw. By continuity, it is also the case that bw(vjr0) < bw(vjr)
in such a neighborhood. The previous arguments can then be repeated to obtain a

contradiction.

Hence, it has now been shown that bw < b
0
w, thereby implying that bv0 � bv. Stated

di¤erently, bw(vwjr) < bw(vwjr0) and k(vwjr) � k(vwjr0). Moreover, either k(vwjr) >
k(vwjr0) or k(vjr) is �atter than k(vjr0) near vw. In either case, bw(vjr) < bw(vjr0)
and k(vjr) > k(vjr0) when v is close to vw. Arguments like those above can then be
used to prove that these inequalities are unchanged as v is reduced from vw to r0.

Proof of Proposition 2. Consider changes in mw �rst. Let bv and bv0 denote the
cut-o¤ types when the composition of bidders is (ms;mw) and (ms;m

0
w), respectively.

Let bw and b
0
w denote weak bidders�maximum bid in the two cases. Hubbard and

Kirkegaard (2019, Proposition 2) have shown that if bv < vs, as assumed, then bv0 < bv.15
Thus, k(vwjr;ms;m

0
w) < k(vwjr;ms;mw). Starting at vw, reduce v until the �rst

point is reached (if one exists) where k(v0jr;ms;m
0
w) = k(v

0jr;ms;mw), with v0 > r.

Recall that by Lemma 1, k(v0jr;ms;mw) > v
0. Assume �rst that bw(v0jr;ms;m

0
w) �

bw(v
0jr;ms;mw). Then,

k(v0jr;ms;m
0
w)� bw(v0jr;ms;m

0
w)

v0 � bw(v0jr;ms;m0
w)

� k(v0jr;ms;mw)� bw(v0jr;ms;mw)

v0 � bw(v0jr;ms;mw)
> 1:

Combined withm0
w > mw these inequalities ensure that k0(v0jr;ms;m

0
w) > k

0(v0jr;ms;mw).

However, this contradicts the fact that k(vjr;ms;m
0
w) < k(vjr;ms;mw) at v > v0. As-

sume next that bw(v0jr;ms;m
0
w) < bw(v

0jr;ms;mw). Since k(v0jr;ms;m
0
w) = k(v

0jr;ms;mw),

15The statement of Hubbard and Kirkegaard�s (2019) result assumes that mw � 2. However, as
explained earlier, this assumption can be weakened to mw � 1 once reverse hazard rate dominance
is assumed.
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it must also hold that

bs(k(v
0jr;ms;m

0
w)jr;ms;m

0
w) = bw(v

0jr;ms;m
0
w)

< bw(v
0jr;ms;mw)

= bs(k(v
0jr;ms;mw)jr;ms;mw);

where bs stands for the strong bidders�strategy. Letting 'i(bjr;ms;mw) and 'i(bjr;ms;m
0
w)

denote the inverse bidding strategy of a bidder in group i, i = s; w, there must

now exist some b for which 's(bjr;ms;m
0
w) > 's(bjr;ms;mw) and 'w(bjr;ms;m

0
w) >

'w(bjr;ms;mw). However, this is impossible as established in the proof of Hubbard

and Kirkegaard�s (2019) Proposition 2. Hence, there can be no v0 2 (r; vw) for which
k(v0jr;ms;m

0
w) = k(v

0jr;ms;mw). Since k(vwjr;ms;m
0
w) < k(vwjr;ms;mw), continu-

ity then implies that k(vjr;ms;m
0
w) < k(vjr;ms;mw) for all v 2 (r; vw]. The proof of

the result for changes in ms is analogous.

Proof of Proposition 3. Lemma 1 establishes the lower bound that k(v) > v for

all v 2 (r; vw]. An upper bound on k(v) is derived next. The proof then concludes
by showing that the upper bound converges to v as the number of bidders goes to

in�nity.

Using (7) and the condition that '0w(b) � 0 yield the conclusion that

ms

k(v)� bw(v)
� ms � 1
v � bw(v)

� 0

or

k(v) � ms

ms � 1
v � 1

ms � 1
bw(v) (10)

for all v 2 (r; vw]. Since bw(v) is bounded above by v, the last term in (10) goes to

zero as ms !1. Since the �rst term converges to v, it now follows that k(v)! v as

ms !1.
Next, consider changes in mw instead. In equilibrium, bw(v) � v. At the same

time, it follows from Myerson (1981) that for any v 2 (r; vw],

(v � bw(v))Fw(v)mw�1Fs(k(v))
ms =

Z v

r

Fw(x)
mw�1Fs(k(x))

msdx
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or

bw(v) = v �
Z v

r

�
Fw(x)

Fw(v)

�mw�1�Fs(k(x))
Fs(k(v))

�ms

dx

� v �
Z v

r

�
Fw(x)

Fw(v)

�mw�1

dx! v as mw !1:

Thus, bw(v) ! v as mw ! 1. Once again, (10) now implies that k(v) ! v as

mw !1.

Proof of Proposition 8. Assume that 0 � z � Js(v) for all v 2 [vw; vs]. Then,
regardless of (ms;mw), the optimal reserve price in either auction is strictly below vw.

Proposition 6 implies that (r;ms;mw) 2 P for all r 2 (vs; vw) when ms and/or mw is

su¢ ciently large. Hence, �FPA(z; r;ms;mw) > �
SPA(z; r;ms;mw) for all r 2 (vs; vw).

Thus, if rSPA(z;ms;mw) > vs then the FPA is strictly more pro�table, even without

changing the reserve price. Similarly, if rSPA(z;ms;mw) = vs then it still holds, by

continuity of �SPA, that �FPA(z; r;ms;mw) > �
SPA(z; vs;ms;mw) for some r close

to vs. Thus, regardless of what the exact optimal reserve price is in the SPA, the

FPA with an optimal reserve price is strictly more pro�table.

Proof of Proposition 9. The proof proceeds in several steps.

Step 1: Consider a setting in which the smallest optimal reserve price in the SPA

is below vw and assume that (rSPA(z);ms;mw) 2 P. Then, following the same logic
as in the proof of Proposition 8, the FPA must be strictly more pro�table than the

SPA. The reason is that the seller can guarantee herself a strictly higher expected

pro�t in the FPA than in the SPA simply by using the same reserve price in the

former as in the latter. Adjusting the reserve price in the FPA is just an additional

bene�t. More formally,

�FPA(z; rFPA(z;ms;mw);ms;mw) � �FPA(z; rSPA(z;ms;mw);ms;mw)

> �SPA(z; rSPA(z;ms;mw);ms;mw);

where the strict inequality follows from (rSPA(z;ms;mw);ms;mw) 2 P. The proof
relies on constructing a setting where the above observation can be invoked.
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Step 2: Note �rst that

@Js(vjvs)
@v

= 2 +
g0(v)

g(v)

G(vs)�G(v)
g(v)

:

By assumption, g(�) > 0. Likewise, since g0(�) is continuous by assumption, g0(v) is
bounded. Thus, Js(vjvs) is strictly increasing in v when v is close to vs. Similarly,
Jw(v) is strictly increasing in v when v is close to vw. By continuity, when vs is

close to vw there thus exists some v0 < vw such that Jw(v) and Js(vjvs) are both
strictly increasing for all v between v0 and vw and vs, respectively. Next, recall that

Js(vwjvs) < Jw(vw) whenever vs > vw. Thus, there also exists some v00 < vw such

that Js(vjvs) < Jw(v) for all v 2 (v00; vw]. To clarify, both v0 and v00 depend on vs.
For any vs close to vw, consider now the set of types between maxfv0; v00g and vw.
For any type, v, in this set, there exists a unique � > v that solves Jw(v) = Js(� jvs)
such that virtual valuations are equated. Let �(vjvs) denote the resulting function.
Since Jw(v) and Js(vjvs) are strictly increasing, �(vjvs) is also strictly increasing and
di¤erentiable. In the �rst step, it is shown how �(vjvs) and k(v) can, under one
speci�c condition, be compared by bounding the former from below and the latter

from above.

Note that
@�(vjvs)
@v

= J 0w(v)

�
@Js(� jvs)
@�

��1
:

Recall that �(vwjvs) = vw in the limit where vs = vw. Hence, when vs = vw

@�(vjvw)
@v jv=vw

= 1 <
ms

ms � 1
.

Thus, for any (ms;mw), there is a set of (v; vs), with v < vw < vs, close to (vw; vw)

for which @�(vjvs)
@v

< ms

ms�1 . On this set, �(vjvs) is thus bounded below by

�(vjvs) = �(vwjvs) +
ms

ms � 1
(v � vw) ; (11)

where �(vwjvs) = �(vwjvs).
Together, (7) and the equilibrium property that '0w(b) � 0 imply that

ms

k(v)� bw(v)
� ms � 1
v � bw(v)

� 0
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or, consistent with (2),

k(v) � ms

ms � 1
v � 1

ms � 1
bw(v):

Since bw(v) � r, k(v) is bounded above by

k(v) =
ms

ms � 1
v � 1

ms � 1
r:

Now, since �(vjvs) and k(v) have the same slope, it follows that if �(vwjvs) > k(vw)
then �(vjvs) > k(v) for all v � r. In this case,

�(vjvs) � �(vjvs) > k(vjr) � k(vjr)

and the monotonicity of Js(vjvs) then implies that (r;ms;mw) 2 P. Hence, the

argument in Step 1 of the proof applies if the condition that �(vwjvs) > k(vw) is

satis�ed when r = rSPA(z). Thus, it remains to investigate rSPA(z), which evidently

depends on z, and the condition that �(vwjvs) > k(vw).
Step 3: The assertion in the proposition is proven by constructing a speci�c

own-use valuation that works when vs is close enough to vw. To this end, for any vs
close to vw, de�ne z(vs) = Js(vwjvs) > 0. For a �xed vs, assume the seller�s own-use
valuation is z(vs). Note that z(vw) = vw. Thus, the optimal reserve price in either

auction is exactly vw when vs = vw. Note also that z0(vs) < 0. Hence, z(vs) < vw

whenever vs > vw.

Since Js(vjvs) is strictly increasing in v when v and vs are close to vw, it holds
that z(vs)� Js(vjvs) < 0 for all v > vw. The implication is that the optimal reserve
price in the SPA is strictly below vw whenever vs is above vw. At such reserve prices,

�SPA(z; r;ms;mw) = zFs(r)
msFw(r)

mw +mw

Z vw

r

Jw(v)Fw(v)
mw�1Fs(v)

msfw(v)dv

+ms

Z vw

r

Js(v)Fs(v)
ms�1Fw(v)

mwfs(v)dv +ms

Z vs

vw

Js(v)Fs(v)
ms�1fs(v)dv:

Thus, any optimal reserve price in the SPA, denoted r(vs), must satisfy the �rst order

condition

ms [z � Js(rjvs)]
g(r)

G(r)
+mw [z � Jw(r)]

fw(r)

Fw(r)
= 0:
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When vs = vw, the �rst order condition is satis�ed at r(vw) = vw. By continuity,

when vs is marginally above vw, r(vs) must remain close to vw. Thus, Js(vjvs) and
Jw(v) are strictly increasing in v for all v � r. Hence, z(vs) � Js(rjvs) > z(vs) �
Js(vwjvs) = 0. To satisfy the �rst order condition it is then necessary that z(vs) �
Jw(r) < 0. Consequently, Jw(r) > z(vs) > Js(rjvs) or Jw(r) > Js(vwjvs) > Js(rjvs).
Monotonicity then implies that Jw(v) > Js(vjvs) for all v 2 [r; vw]. Thus, the analysis
in Step 2 is valid, except that the condition that �(vwjvs) > k(vw) has not yet been
veri�ed. Thus, the last step of the proof is to prove that �(vwjvs) > k(vw) when vs is
marginally above vw.

Step 4: Given z(vs) = Js(vwjvs), it is straightforward to show that when vs = vw,

r0(vw) = �
mw

2

1

ms
g(vw)
G(vw)

Fw(vw)
fw(vw)

+mw

� �1
2

mw

ms +mw

> �ms � 1
2

; (12)

where the �rst inequality comes from reverse hazard rate dominance and the second

inequality from the fact that ms � 2. Given the optimal reserve price in the SPA,

write the bound on k(v) as

k(vjr(vs)) =
ms

ms � 1
v � 1

ms � 1
r(vs);

with
@k(vwjr(vs))

@vs jvs=vw
= � 1

ms � 1
r0(vs) <

1

2
;

by (12).

In contrast,
@�(vjvs)
@vs

=
g(vs)

g(v)

�
@Js(� jvs)
@�

��1
:

Evaluated at �(vwjvs), the term in the parenthesis reduces to 2 when vs = vw. Hence,
by (11)

@�(vwjvs)
@vs jvs=vw

=
@�(vwjvs)
@vs jvs=vw

=
1

2
:

Since �(vwjvw) = vw = k(vwjr(vw)), it follows that �(vwjvs) > k(vwjr(vs)) when
vs is marginally above vw. By the argument in Step 2 (which is valid by Step 3),

(r (vs) ;ms;mw) 2 P when vs is marginally above vw. The proposition now follows

by invoking Step 1.
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Appendix B: Extensions

B.1 Auctions with one strong bidder

Kirkegaard�s (2012a) approach accommodates any mw � 1. However, it necessitates
that ms = 1. Moreover, he imposes stronger assumptions on the relationship between

Fs and Fw. This subsection establishes that these additional assumptions are not

required in order to extend Proposition 4 to the ms = 1 case. Thus, I will assume

only that (i) vs > vw, (ii) Fs dominates Fw in terms of the reverse hazard rate, and,

for expositional simplicity, that (iii) Js(v) is strictly increasing.

Bid-separation never arises when there is just one strong bidder. Thus, k(vw) =bv = vs is the same regardless of the reserve price. However, it is easy to see from

the system in (8) that bw is strictly increasing in r. This in turn means that k0(vw)

becomes larger and larger as r increases. Since bw > r, it also holds that bw converges

to vw as r converges to vw. Thus, from (8), k0(vw) can be made arbitrarily large

simply by selecting a reserve price that is su¢ ciently close to vw.

When the weak bidders�type, v, is su¢ ciently high �such that Jw(v) > Js(v) �

there must exist some � > v for whichZ �(v)

v

(Jw(v)� Js(x)) dFs(x) = 0:

The assumption that Js(v) is strictly increasing implies that �(v) is unique and thatZ k(vjr;ms;mw)

v

(Jw(v)� Js(x)) dFs(x) > 0

as long as k(v) 2 (v; �(v)). It can be veri�ed that �(vw) = vs. Now, �(v) is indepen-
dent of r, whereas k(v) depends on r. Moreover, k(vw) = �(vw). Since k0(vw) can

be made arbitrarily large by letting r converge to vw, it now follows that there exists

large r for which

k(vjr;ms;mw) 2 (v; �(v)) for all v 2 (r; vw) .

By (3), the FPA outperforms the SPA at such a reserve price. Thus, Proposition 4

has now been extended.
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B.2 Weaker su¢ cient conditions

Assume again thatms � 2. As emphasized earlier, the condition that (r;ms;mw) 2 P
is su¢ cient but not necessary to conclude that �(r;ms;mw) > 0. For instance, the

weaker condition that (r;ms;mw) belongs to

bP = ((r;ms;mw)

�����
Z k(vjr;ms;mw)

v

(Jw(v)� Js(x)) dFs(x)ms > 0 for all v 2 (r; vw]
)

is su¢ cient to obtain the same ranking, as can be seen from (3). Replacing P by bP is
analogous to how Kirkegaard (2012a) re�nes Maskin and Riley�s (2000) mechanism

design argument.

Recall that Jw(v) > Js(x) when v and x are both close to vw. Thus,Z k

v

(Jw(v)� Js(x)) dFs(x)ms (13)

is positive if v and k are close to vw. Consequently, when r is close to vw, (r;ms;mw) 2bP. Thus, a counterpart to Proposition 4 exists in which P is replaced by bP.
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Appendix C: Excerpt fromHubbard and Kirkegaard

(2019) �NOT FOR PUBLICATION

The current paper refers to Propositions 2 in Hubbard and Kirkegaard (2019). For

convenience, this appendix reiterates this results along with its proof, translated into

the notation of the current paper.

Remark: Reverse hazard rate dominance is not assumed in Hubbard and Kirkegaard.
Instead, it is assumed that mw � 2. As explained in the proof of Proposition 1 of the
current paper, these assumptions can be replaced by reverse hazard rate dominance

and mw � 1. There are n = ms + mw bidders in total. Finally, assume that vs >

vw > vs � vw.

Preliminaries: Let 'i(b) denote bidder i�s inverse bidding strategy. Consider the
range of bids where all bidders are active. If bidder i with type v contemplates bidding

in this range, his expected payo¤ is (v � b)
Q
j 6=i Fj('j(b)), which is maximized where

ln (v � b) +
X
j 6=i

lnFj('j(b))

is maximized. Deriving the �rst order condition and imposing the equilibrium condi-

tion that v = 'i(b) producesX
j 6=i

d

db
lnFj('j(b)) =

1

'i(b)� b
: (14)

Summing (14) across all agents and subtracting (14) for agent i yields the system of

di¤erential equations in (7).

Proposition: Assume m0
s � ms � 2, m0

w � mw � 2 and m0
s + m

0
w > ms + mw.

Assume there is a binding reserve price in place, with r 2 (v;minfvs; vwg). Then,bv0 � bv with bv0 < bv if bv < vs. Consequently, if bid-separation occurs under (ms;mw)

then it also occurs under (m0
s;m

0
w), i.e. as the number of bidders increases.

Proof. Fix ms and consider a change in mw. The proposition is trivially true ifbv = vs. Hence, assume bv < vs. Since the relationship
bv = min�vs; ms

ms � 1
vw �

1

ms � 1
bw

�
(15)
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does not depend on mw, it follows that bv0 < bv if and only if b0w > bw, where b0w and
bw are the maximum bids of weak bidders in the setting with (ms;m

0
w) and (ms;mw)

bidders, respectively. Thus, assume by contradiction that b
0
w � bw.

The proof proceeds in two steps. First, inverse bidding strategies in the two

settings are compared. In the second step, this comparison makes it possible to

contradict the starting assumption that b
0
w � bw.

Consider �rst the case where the inequality is strict, or b
0
w < bw and thus bv0 > bv.

Let 
i(b) denote the inverse bidding strategies with (ms;m
0
w) bidders and let 'i(b)

denote the inverse bidding strategies with (ms;mw) bidders. By assumption, 
i(b
0
w) >

'i(b
0
w), i = s; w. Now reduce the bid from b

0
w until the �rst point is reached (if one

exists) for which 
i(b) = 'i(b) but 
j(b) � 'j(b), for some i = s; w, with i 6= j. If

i = w, then from (7)

d

db
lnFw(
w(b)) =

1

ms +m0
w � 1

�
ms


s(b)� b
� ms � 1

w(b)� b

�
<

1

ms +mw � 1

�
ms

's(b)� b
� ms � 1
'w(b)� b

�
=

d

db
lnFw('w(b)):

However, this contradicts the fact that 
w > 'w to the right of b (as b is the highest

bid at which 
w and 'w intersects and 
w(b
0
w) > 'w(b

0
w)). Thus, assume instead

that 
s(b) = 's(b) but 
w(b) � 'w(b). Here, we wish to compare d
db
lnFs(
s(b)) and

d
db
lnFs('s(b)). If the former is strictly smaller than the latter, we obtain the same

contradiction as above. On the other hand, it is easy to verify that

d

db
lnFs(
s(b)) �

d

db
lnFs('s(b))

at some b where 
s(b) = 's(b) but 
w(b) � 'w(b) implies that

ms

's(b)� b
� ms � 1
'w(b)� b

� 0;

which in turn means that d
db
lnFs('s(b)) � 0. However, this contradicts the equilib-

rium property that d
db
lnFs('s(b)) > 0 in the interior. In other words, there can be

no intersection between 
i and 'i as b is reduced from b
0
w. Thus, we conclude that


i(b) > 'i(b), for all b 2 (r; b
0
w], i = s; w.
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The second case is b
0
w = bw and bv0 = bv. Here, it can be shown that 
i(b) > 'i(b),

for all b 2 (r; b0w). A sketch is given next (with details available on request). By

assumption, 
i(b
0
w) = 'i(b

0
w). Moreover,

d

db
lnFw(
w(b))jb=b0w

=
d

db
lnFw('w(b))jb=b0w

= 0

d

db
lnFs(
s(b))jb=b0w

=
d

db
lnFs('s(b))jb=b0w

=
1

ms

1

vw � b
0
w

.

However, simple di¤erentiation and tedious algebra can be used to prove that

d2

db2
lnFs(
s(b))jb=b0w

>
d2

db2
lnFs('s(b))jb=b0w

and thus
d

db
lnFs(
s(b)) <

d

db
lnFs('s(b))

for b close to, but strictly below, b
0
w. In other words, 
s(b) > 's(b) for b close to, but

strictly below, b
0
w. This property can then be used to establish that 
w(b) > 'w(b)

for b close to, but strictly below, b
0
w. The argument from the �rst case (b

0
w = bw) then

applies to prove that 
i(b) > 'i(b), for all b 2 (r; b
0
w).

The next step utilizes (14). Speci�cally, the above ranking of inverse bidding

strategies implies that

d

db
lnFs(
s(b))

ms�1Fw(
w(b))
m0
w =

1


s(b)� b

<
1

's(b)� b

=
d

db
lnFs('s(b))

ms�1Fw('w(b))
mw

for all b 2 (r; b0w). Equivalently

d

db

"
ln

�
Fs(
s(b))

Fs(v0)

�ms�1

Fw(
w(b))
m0
w

#
<
d

db

24ln Fs('s(b))

Fs('s(b
0
w))

!ms�1 
Fw('w(b))

Fw('w(b
0
w))

!mw
35 :

The two terms in brackets coincide at b = b
0
w, where they are both equal to zero.

Since r > v, both bracketed terms converge to �nite values as b! r. However, since
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the bracketed term on the left is �atter than its counterpart on the right, is must

hold that

ln

�
Fs(r)

Fs(v0)

�ms�1

Fw(r)
m0
w > ln

 
Fs(r)

Fs('s(b
0
w))

!ms�1 
Fw(r)

Fw('w(b
0
w))

!mw

since 
i(r) = 'i(r) = r, i = s; w. Since v
0 = 
s(b

0
w) � 's(b

0
w) and Fw('w(b

0
w)) � 1;�

Fs(r)

Fs(v0)

�ms�1

Fw(r)
m0
w >

�
Fs(r)

Fs(v0)

�ms�1

(Fw(r))
mw

or Fw(r)m
0
w > (Fw(r))

mw . However, since Fw(r) 2 (0; 1) and m0
w > mw, this is

impossible. Hence, a contradiction to the assumption that b
0
w � bw has now been

obtained.

Next, �x mw instead and let ms increase to m0
s. Again, the proposition is trivially

true if bv = vs. Hence, assume bv < vs. Note that the relationship in (15) depends

on ms. In fact, (15) implies that if bv0 � bv then b0w < bw is necessary. Assume by

contradiction that bv0 � bv and note now that 
s(b0w) = bv0 > bv = 's(bw) > 's(b0w) and
likewise that 
w(b

0
w) = vw = 'w(bw) > 'w(b

0
w). Hence, 
i(b

0
w) > 'i(b

0
w), i = s; w.

Following the same steps as above then yields the contradiction.

Thus, it has now been established that if either ms or mw increases then bv0 � bv
with bv0 < bv if bv < vs. Since increases in ms and mw move the equilibrium in the same

direction, the same conclusion holds if both ms and mw increase at the same time.

This concludes the proof.
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