
Online Appendix to:
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Overview

The �rst section of this appendix is devoted to discussing the assumptions of

the model. The assumptions are interpreted and in some cases justi�ed more

carefully. The relationship to some existing literature is spelled out in more

detail and possible relaxations are discussed as well.

The second section describes the details of Example 1 from the main article,

using the multiplicative model with square-root utility. It includes a closed-form

solution of the optimal contract that induces any given interior action as well as

an explicit characterization of implementation costs. The third section argues

more formally that incentives are �atter when smaller a2 are induced.

The fourth section presents a reinterpretation of the reduced problem in which

the agent is intrinsically motivated to work hard on the job. The �fth and �nal

section examines the model�s link to the literature on common agency.

A Assumptions

This section discusses Assumptions A1�A5 in more detail. An example is given

in which A4 does not hold. This example clari�es how the model di¤ers from,

and is richer than, the Linear-Exponential-Normal model.

A.1 Assumptions A1�A2

Assumption A1 (independence) assumes that the signal x1 and the private re-

ward x2 are independent. For example, there is little reason to think that job

performance and the mastery of a hobby are correlated. In other settings, such as
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when the agent is moonlighting in the same industry, the independence assump-

tion is harder to justify. However, the assumption may have some behavioral

justi�cation even in such cases. In particular, there is a growing literature on

the prevalence and consequences of correlation neglect. See e.g. Levy and Razin

(2015) and the references therein. In the current context, correlation neglect

arises if the principal and the agent know the marginal distributions, but ignore

any correlation between the random variables in the joint distribution.

There are at least two technical problems related to relaxing the independence

assumption. One is to establish a counterpart to Lemma 1 for �well-behaved�

contracts. Moreover, (7) may no longer apply. Thus, it also becomes harder to

verify whether the contract is �well-behaved� in the �rst place. In short, A1

captures the main price of allowing the rewards function to be non-separable.

Assumption A2 (MLRP) ensures both that (i) the contract is regular and that

(ii) a �rst order stochastic dominance property holds, i.e. that Giai(xijai) < 0 for
xi 2 (xi; xi). The assumption that g1(x1ja1) is log-supermodular can be replaced
with the assumption that the �rst order stochastic dominance property holds and

that there is an exogenous restriction that the contract must be non-decreasing

in x1. Such a restriction arises if the agent can sabotage the signal after it has

been realized but before the principal observes it.

The assumption that g2(x2ja2) is log-supermodular plays a role in the ag-
gregation result in Lemma 2. It can be replaced by the �rst order stochastic

dominance property and the more direct assumption that (15) holds. Note that

(15) is automatic in the multiplicative model.

A.2 Assumption A3

Assumption A3 (LOCC) is a technically motivated assumption that is instru-

mental in justifying the solution method. It is a direct extension of Rogerson�s

(1985) convexity assumption (CDFC). Recall that Rogerson assumes that there is

a single signal and a single task. Conlon (2009) presents justi�cations of the �rst-

order approach (FOA) that permit multiple signals but a single task. Kirkegaard

(2017) allows multiple tasks, under the assumption that A1 holds. However, pri-

vate rewards are ruled out and all signals are contractible. In the previous version
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of the current article, Kirkegaard (2016), justi�cations of the FOA with private

rewards are given that are in the spirit of Jewitt�s (1988) single-task justi�cations.

A su¢ cient condition for LOCC is that G1 and G2 are both log-convex. The

product of log-convex functions is itself log-convex, and therefore necessarily con-

vex. Alternatively, �x some G1 that is strictly convex in a1, but not necessarily

log-convex. Then, there is always some �su¢ ciently convex�G2 function that

ensures that Assumption A3 is satis�ed. For example, a non-negative function

h(z) is said to be �-convex if h(z)�=� is convex, or h00(z)h(z)=h0(z)2 � 1�� for all
z. Thus, a �-convex function is log-convex if and only if � � 0 (and convex if and
only if � � 1). If G2(x2ja2) satis�es Assumption A2 and is �-convex in a2 (for all
x2) for some small enough � (i.e. � is negative, but numerically large), then As-

sumption A3 is satis�ed. To see this, note �rst that the convexity assumption in

A3 necessitates that G1G1a1a1(G
2G2a2a2=

�
G2a2

�2
)�
�
G1a1

�2 � 0 for interior (x1; x2).
By �-convexity, the left hand side is greater than G1G1a1a1 (1� �) �

�
G1a1

�2 � 0.
Hence, the inequality is satis�ed if � is small enough. To reiterate, as long as

G1 satis�es a strict version of CDFC there are G2 functions that will permit the

FOA to be justi�ed even when allowing for private rewards.

There are some similarities between the current model of private rewards and

the literature on hidden savings. Ábrahám et al. (2011) consider a situation

where the agent works for the principal while simultaneously privately investing

in a risk-free asset. There is thus no uncertainty concerning the return to the

non-contractible action. Hence, performance on the job, x1, is the only source of

uncertainty. Ábrahám et al. (2011) justify the FOA by assuming that the distrib-

ution of x1 is log-convex in e¤ort on the job, a1, and that the agent has decreasing

absolute risk aversion. Assumptions A3 (LOCC) and A5 (log-supermodularity)

in the current article can be seen as extensions that allow returns that are both

stochastic and potentially non-monetary.

More speci�cally, let a2 denote the dollar amount that the agent saves. Savings

has a risk-free rate of return of r. Letting U(�) denote the Bernoulli utility
function over total wealth, the agent�s utility upon earning w(x1) on the job and

ra2 from savings is U(w(x1) + ra2). Given action (a1; a2), integration by parts
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yields expected utility from rewards ofZ
U(w(x1)+ra2)g

1(x1ja1)dx1 = U(w(x1)+ra2)�
Z
U 0(w(x1)+ra2)w

0(x1)G
1(x1ja1)dx1:
(25)

The �rst term is concave in (a1; a2), given the agent is risk averse. Next, note that

decreasing absolute risk aversion in total income is equivalent to log-convexity of

U 0(�). First, since U 0(�) is log-convex in w, the right hand side of the counterpart
to (7) is then well-behaved. Second, U 0(�) is log-convex in a2. Then, assuming G1

is log-convex in a1, the integrand in the above expression is now the product of

functions that are log-convex in (a1; a2). Hence, the integrand is log-convex and

therefore convex in (a1; a2). It now follows that expected utility from rewards

are concave in the agent�s action. These are the main steps in Ábrahám et al.�s

(2011) justi�cation of the FOA.

Note that log-convexity of U 0(�) plays two roles above. Moreover, log-convexity
of U 0(�) is equivalent to U 0(�) being log-supermodular in (w; a2). In the current
article, V1(w; a2) plays the role of U 0(�) in (25). Assumption A5 implies that
V1(w; a2) is log-supermodular in (w; a2) (Lemma 2). This assumption is used to

discipline the FOA contract in (7). However, since V1(w; a2) is not necessarily log-

convex in a2, the above argument cannot be used to establish concavity. Instead,

concavity in Lemma 1 comes from the convexity assumption in Assumption A3

(LOCC) and the substitutability assumption that v12 < 0. In A3, convexity also

reduces to requiring that the product of two functions, G1(x1ja1) and G2(x2ja2),
are convex in (a1; a2). Log-convexity of each function is again su¢ cient.

A.3 Assumption A4

It is possible to relax the assumption that tasks are substitutes in the cost func-

tion, or c12 � 0. The arguments that led to the reduced problem do not depend

on this assumption. Hence, even if it is assumed that tasks are complements,

or c12 � 0, there is a set of actions on which the reduced problem identi�es the

optimal contract. Moreover, for a given a1, there is once again a cut-o¤ value of

a2, s(a1ju), such that (P) is redundant if and only if a2 � s(a1ju). Theorem 1

applies.
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However, the sign of EU12 is ambiguous when c12 < 0. The reason is that

tasks are substitutes in expected rewards, yet complements in the cost function.

If the latter e¤ect dominates, then implementation costs are strictly decreasing

in a2 for all a2 � s(a1ju). This can be seen by using the argument in the proof
of Proposition 4. The agent will then be induced to distort his work-life balance

further towards life compared to the symmetric-information benchmark and (P)

must bind. That is, the agent�s private life is too rich compared to the benchmark.

Since marginal costs of e¤ort on the job is decreasing in a2 in this case, it is also

possible that incentives are �atter than with the symmetric-information level of

a2. Theorem 2, however, does require that EU12 < 0, and therefore it may no

longer be valid once c12 is allowed to be negative.

The assumption in A4 that v12 < 0 is important in several places, including

very early on in establishing concavity of the agent�s expected payo¤ (Lemma 1).

Relaxing this assumption to allow rewards from di¤erent sources to be comple-

ments is an important topic for future research but it is likely to be technically

challenging.

As just mentioned, the reduced problem does not rely on the assumption that

c12 � 0. Neither does the next example. In fact, it does not even require As-

sumption A1 (independence). This example illustrates why Assumption A4 rules

out v12 = 0. Speci�cally, the additive model has an additively separable rewards

function which eliminates any direct interaction between rewards from di¤erent

sources. As a result, the model is not substantially di¤erent from the standard

model. The point is that the article�s new results stem from interdependencies in

the rewards function. The additive model also e¤ectively reproduces the results

of the LEN model.

Example 2 (The Additive Model): Assume that

v(w; x2) = u(w) + q(x2);

where u and q are strictly increasing and strictly concave functions. Note that

v12 = 0. Assume that c(a1; a2) is strictly increasing and convex. Recall that

a2 determines the distribution of x2. Hence, let Q(a2) denote the expectation

of q(x2), given a2. By Assumptions A2 and A3, Q(a2) is strictly increasing
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and strictly concave. Similarly, a1 determines the distribution of x1 and thus

the distribution of wages. Let ! denote the contract and write U(a1j!) as the
expectation of u(w(x1)), given a1. Thus,

EU(a1; a2) = U(a1j!) +Q(a2)� c(a1; a2): (26)

Note that for a �xed a1, the agent�s optimal a2 is unique and independent of

the contract. In other words, once the principal has decided which a1 he wishes to

induce, a2 is predetermined and impossible to manipulate. Henceforth, let a2(a1)

denote the optimal value of a2, given a1. The model is now essentially a standard

model since the agent�s action is e¤ectively one-dimensional. For concreteness,

EU(a1) = U(a1j!) +Q(a2(a1))� c(a1; a2(a1)):

Unsurprisingly, the model has standard features. The principal designs the

contract to manipulate a1. He has to respect the participation constraint that

U(a1j!) � u�Q(a2(a1)) + c(a1; a2(a1)):

It is easy to verify that the right hand side is increasing in a1. Thus, the agent

must be promised higher rewards from labor income to accept a contract that

induces higher e¤ort. To induce interior e¤ort a1 on the job, L-IC1 is

@U(a1j!)
@a1

= c1(a1; a2(a1)):

Again, it can be checked that the right hand side is increasing in a1. Thus, to

induce higher e¤ort on the job, expected utility from rewards must respond more

dramatically to changes in e¤ort. These conclusions are entirely standard.

The LEN model produces identical results. The reason is that the agent�s

certainty equivalent in the LEN model is separable, as in (26). See Kirkegaard

(2016) for a more detailed discussion of private rewards in the LEN model. The

chief di¤erence is that the LENmodel stipulates that contracts are linear, w(x1) =

�+�x1, and that the agent�s action is to pick the means of normally distributed

signals. Thus, U(a1j!) = � + �a1 and @U(a1j!)
@a1

= �. Hence, the LEN model has
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an extremely convenient one-parameter measure of the strength of incentives, �.

The higher � is, the harder the agent works on the job. A drawback of the model

in the current article is that it does not have an equally convenient measure of

incentives. On the other hand, the private rewards version of the LEN model is

not as �exible since a2 is predetermined once a1 has been decided upon. N

A.4 Assumption A5

As mentioned, Assumption A5 has two important uses. First, it helps establish

that optimal contracts are regular. Second, it is instrumental in the proof that

(P) is redundant for some actions. In addition, it has a compelling interpre-

tation. Nevertheless, it is technically interesting to imagine that A5 does not

hold and that the function V (w; a2) is weakly more risk averse than the function

[�V2(w; a2)], or
CE�V2(a1; a2jw(�)) � CEV (a1; a2jw(�)):

Recall that L-IC2 and (P) are

CE�V2(a1; a2jw(�)) = L(a1; a2) and CEV (a1; a2jw(�)) � W (a1; a2ju);

respectively, and that

W (a1; a2ju) > L(a1; a2) for a2 > s(a1ju):

Hence, if (P) is satis�ed, then

CE�V2(a1; a2jw(�)) � CEV (a1; a2jw(�)) � W (a1; a2ju) > L(a1; a2) for a2 > s(a1ju);

which violates L-IC2. Hence, as in the multiplicative model, no a2 > s(a1ju) can
be implemented. In other words, any implementable action must skew the work-

life balance away from life compared to the symmetric information benchmark.

Of course, without A5, (P) need not be slack. Likewise, it is hard to guarantee

that the optimal contract is monotonic for all x1. However, it still holds that

any optimal contract must on average be weakly �atter than the contract that

implements the symmetric information level of work-life balance; see Section C
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of this Online Appendix.

B Examples using the multiplicative model

In the multiplicative model,

v(w; x2) = �m(w)n(x2);

where m and n are strictly negative, strictly increasing, and strictly concave

functions. In this section, it is further assumed that

m(w) = 2
p
w � k;

where k > 0 is a constant. The domain is restricted to w 2
h
0;
�
k
2

�2�
, where

w � 0 is to ensure that m(w) is de�ned. The restriction that w <
�
k
2

�2
ensures

that m(w) is strictly negative. Square-root utility has been used in standard

models to derive optimal contracts. See e.g. Jewitt et al (2008) or Kirkegaard

(2017). Those techniques are generalized here.

Note that contrary to the set-up in the main article, v(w; x2) is de�ned on

a compact set of wages. This raises the possibility that the optimal contract

stipulates wages that are at the corner, i.e. that w(x1) = 0 for some x1.10 To

stay consistent with the analysis in the main article, additional restrictions are

therefore imposed in the following which serve to guarantee that optimal wages

are interior and that (7) in the main article is valid.

Thus, the remainder of the section is structured as follows. First, the optimal

contract that satis�es L-IC for any interior action is characterized, under the

assumption that the resulting contract yields interior wages. Implementation

costs are then easily derived. Second, based on the �rst step it is straightforward

to identify restrictions that guarantee that interior wages are in fact optimal.

Third, to move towards a fully solved example, functional forms are then speci�ed

for c(a1; a2), n(x2), g1(x1ja1), and g2(x2ja2) as well. This culminates in a full
description of the example from the main article.

10It will be veri�ed below that w(x1) <
�
k
2

�2
for all x1.
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B.1 Optimal contracts with interior wages

Given a contract w(�), the agent�s expected utility from action (a1; a2) is

EU(a1; a2jw(�)) =

Z Z
v(w(x1); x2)g

1(x1ja1)g2(x2ja2)dx1dx2 � c(a1; a2)

= �
Z
m(w(x1))g

1(x1ja1)dx1
Z
n(x2)g

2(x2ja2)dx2 � c(a1; a2);

or, for convenience,

EU(a1; a2jw(�)) = �M(a1jw(�))N(a2)� c(a1; a2); (27)

where

M(a1jw(�)) =

Z
m(w(x1))g

1(x1ja1)dx1 < 0;

N(a2) =

Z
n(x2)g

2(x2ja2)dx2 < 0:

For future reference, Assumption A2 (MLRP) implies that N 0(a2) > 0 since n(x2)

is assumed to be strictly increasing. The convexity assumption in Assumption

A3 (LOCC) implies that N 00(a2) < 0.

Note that

V (w; a2) = �m(w)N(a2);

such that the multiplicative model has the special feature that

V12(w; a2)

V1(w; a2)
=
N 0(a2)

N(a2)

is independent of w. Given the assumptions on m(w), it is moreover the case

that
1

V1(w; a2)
= �

p
w

N(a2)
:

To proceed, the participation constraint is initially ignored. The optimal con-

tract that satis�es L-IC is derived, under the assumption that wages are interior.

This yields the �rst order condition in (7), with � = 0. Given the structure of

9



the multiplicative model, the �rst order condition can then be written asp
w(x1) = ��1N(a2)l1a1(x1ja1)� �2N

0(a2); (28)

which relies on the endogenous multipliers �1 and �2. The next step is to quantify

these. To do so, note that L-IC1 can be written

�
Z h

2
p
w(x1)� k

i
l1a1(x1ja1)N(a2)g

1(x1ja1)dx1 � c1(a1; a2) = 0:

and utilizing (28) then yieldsZ �
2
�
�1N(a2)l

1
a1
(x1ja1) + �2N 0(a2)

�
+ k

�
l1a1(x1ja1)N(a2)g

1(x1ja1)dx1�c1(a1; a2) = 0:

Since the likelihood-ratio has mean zero, the condition reduces to

2�1N(a2)
2

Z �
l1a1(x1ja1)

�2
g1(x1ja1)dx1 � c1(a1; a2) = 0;

which can be solved for �1. For convenience, let I(a1) denote the Fisher Infor-
mation or the variance of the likelihood-ratio,

I(a1) =
Z �

l1a1(x1ja1)
�2
g1(x1ja1)dx1;

such that

�1 =
c1(a1; a2)

2N(a2)2I(a1)
> 0. (29)

Similarly, L-IC2 is

�
Z h

2
p
w(x1)� k

i
N 0(a2)g

1(x1ja1)dx1 � c2(a1; a2) = 0;

or, using (28),Z �
2
�
�1N(a2)l

1
a1
(x1ja1) + �2N 0(a2)

�
+ k

�
N 0(a2)g

1(x1ja1)dx1 � c2(a1; a2) = 0:
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Once again, since the likelihood-ratio has mean zero, this reduces to

[2�2N
0(a2) + k]N

0(a2)� c2(a1; a2) = 0;

which implies that

�2 =
1

2N 0(a2)

�
c2(a1; a2)

N 0(a2)
� k

�
: (30)

Using (29) and (30) in (28) now �nally yield a close-form candidate for the

optimal contract, with

p
w(x1) = �

c1(a1; a2)

2N(a2)I(a1)
l1a1(x1ja1)�

1

2

�
c2(a1; a2)

N 0(a2)
� k

�
: (31)

Proceeding under the assumption that wages are interior �su¢ cient condi-

tions for which are derived in the next subsection �it follows that

w(x1) =

�
� c1(a1; a2)

2N(a2)I(a1)
l1a1(x1ja1)�

�
c2(a1; a2)

2N 0(a2)
� k
2

��2
=

�
c1(a1; a2)

2N(a2)I(a1)

�2 �
l1a1(x1ja1)

�2
+

�
c2(a1; a2)

2N 0(a2)
� k
2

�2
+2

c1(a1; a2)

2N(a2)I(a1)
l1a1(x1ja1)

�
c2(a1; a2)

2N 0(a2)
� k
2

�
when interior action (a1; a2) is implemented. The expected implementation costs

are obtained by taking the expectation over x1, given a1. As mentioned, the

likelihood-ratio has mean zero and variance I(a1). Hence, implementation costs
are

E [wja1; a2] =
�

c1(a1; a2)

2N(a2)I(a1)

�2
I(a1) +

�
c2(a1; a2)

2N 0(a2)
� k
2

�2
or

E [wja1; a2] =
1

4I(a1)

�
c1(a1; a2)

N(a2)

�2
+
1

4

�
c2(a1; a2)

N 0(a2)
� k

�2
: (32)
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For comparative statics, note that

@E [wja1; a2]
@a1

=
1

4

�I 0(a1)
I(a1)2

�
c1(a1; a2)

N(a2)

�2
+

1

2I(a1)
c1(a1; a2)

N(a2)2
c11(a1; a2)

+
1

2

�
c2(a1; a2)

N 0(a2)
� k

�
c12(a1; a2)

N 0(a2)

and

@E [wja1; a2]
@a2

=
1

2I(a1)

�
c1(a1; a2)

N(a2)

�
c12(a1; a2)N(a2)� c1(a1; a2)N 0(a2)

N(a2)2

+
1

2

�
c2(a1; a2)

N 0(a2)
� k

�
c22(a1; a2)N

0(a2)� c2(a1; a2)N 00(a2)

N 0(a2)2
:

It will soon be established that the term in the parenthesis involving k is strictly

negative. It follows that if c1(a1; a2) = 0 and c12(a1; a2) > 0 then E [wja1; a2] is
strictly decreasing in both a1 and a2 in a neighborhood around (a1; a2).

11 Hence,

it it trivial to construct examples with this property. Indeed, Example 1 in the

main article has the features that c1(a1; a2) = 0 and c12(a1; a2) > 0.

Away from (a1; a2), note that the derivative of E [wja1; a2] with respect to a2
is more likely to be positive the larger c12(a1; a2) is, other things being equal.

Thus, a functional form for c(a1; a2) that allows c12 to be large relative to c1, c2,

and c22 will eventually be chosen.

B.2 Parameter restrictions

Recall the restrictions on the domain of m(�) that w � 0 and that w <
�
k
2

�2
,

where the latter is equivalent to the restriction that m(w) < 0. This section

begins by deriving conditions that guarantee that (31) satis�es these restrictions.

Then, functional forms for the utility of private rewards, the cost function, and

the distribution function are speci�ed and it is explained how parameter values

that satisfy the required conditions were chosen to develop Example 1 in the main

article.

First, (31) is feasible only if the right hand side is non-negative. By MLRP,

11Recall that the formula for E[wja1; a2] is valid for interior actions but not necessarily for
boundary actions.
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it is minimized at x1 = x1, where it is noted that l
1
a1
(x1ja1) < 0. Hence, it is

required that

� c1(a1; a2)

N(a2)I(a1)
l1a1(x1ja1)�

�
c2(a1; a2)

N 0(a2)
� k

�
� 0 (33)

for all (a1; a2). Note that (33) necessitates that the bracketed term is strictly

negative. Thus, since N 0(a2) > 0, it follows from (30) that �2 < 0. Recall that

�1 > 0. By MLRP, the solution to (31) is strictly increasing in x1. Hence, for all

x1 except possibly x1, it holds that w(x1) is strictly positive. For future reference,

(33) can be reformulated as

k � c1(a1; a2)

N(a2)I(a1)
l1a1(x1ja1) +

c2(a1; a2)

N 0(a2)
for all (a1; a2): (34)

Second, m(w(x1)) = 2
p
w(x1)� k < 0 is hardest to satisfy at x1 = x1. Using

(31) then yields the condition that

� c1(a1; a2)

N(a2)I(a1)
l1a1(x1ja1)�

c2(a1; a2)

N 0(a2)
< 0 for all (a1; a2); (35)

or

c2(a1; a2) > �
N 0(a2)

N(a2)

l1a1(x1ja1)
I(a1)

c1(a1; a2): (36)

To present fully solved examples, it is of course necessary to specify functional

forms for all the primitives. This is done in the following. Throughout, the

support of ai is taken to be the interval [ai; ai] = [0; 1].

The cost function: To begin, consider the relatively �exible form

c(a1; a2) = t+ t1 (a1 � ba1) + t2 (a2 � ba2) + 1
2
t11 (a1 � ba1)2 + 1

2
t22 (a2 � ba2)2

+t12 (a1 � ba1) (a2 � ba2) : (37)

The example in Kirkegaard (2016) makes use of this functional form, but with

di¤erent parameter values than in the example provided in the current version of

the article.

The functional form is fairly easy to work with in part because cij(ai; aj) = tij
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is constant, i; j = 1; 2. It can be viewed as a (second order) Taylor approximation

of a general cost function. However, there are evidently a lot of parameters to

specify. To help manage this, it will be assumed that t11t22 � t212 = 0, which

already eliminates one degree of freedom. As alluded to earlier, it will also be

assumed that c1(0; 0) = 0. This eliminates another degree of freedom. It will be

explained momentarily how (34) and (36) are used to further restrict the para-

meters. Parameters bai were chosen as bai = ai = 1, implying that ci(a1; a2) = ti.
This simply made it easier to search for parameter values where E [wja1; a2] is
increasing in ai in a neighborhood around (a1; a2). The parameter t is unimpor-

tant since implementation costs depend only on marginal costs. Hence, it has

been chosen to normalize c(0; 0) = 0.

In the solved example, the cost function can be simpli�ed to

c(a1; a2) = 0:7313a2 + 0:405a
2
1 + 0:005a

2
2 + 0:09a1a2: (38)

By continuity, small changes in the parameter values do not change the main

properties of the example.

The marginal distribution functions: Consider the marginal distribution

functions

Gi(xijai) =
�
1� e�

ai+8

72

�
x2i +

�
e�

ai+8

72

�
xi; xi 2 [0; 1], i = 1; 2:

It can be veri�ed that Gi(xijai) is log-convex in ai. As explained in Section A.2 of
this Online Appendix, log-convexity implies that the joint distribution function

F (x1; x2ja1; a2) satis�es Assumption A3 (LOCC). It is also straightforward to
verify that Gi(xijai) satis�es Assumption A2 (MLRP). This distribution function
has the special property that liai(xijai) is independent of ai.
It is also possible to calculate Fisher Information in closed form,

I(a1) =

�
ln
�
2e

a1+8
72 � 1

��
e
a1+8
72 � 2e

a1+8
72 + 2

10 368e3�
a1+8
72 � 31 104e2�

a1+8
72 + 31 104e

a1+8
72 � 10 368

> 0:

This example has the property that I(a1) is strictly decreasing and that
l1a1 (x1ja1)
I(a1)
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is strictly increasing in a1. Given these properties and that the cost function

takes the form in (37), the right hand side of (34) is increasing in a1 and a2.

Hence, the condition is hardest to satisfy at (a1; a2). For concreteness, k is then

speci�ed as the value that leads (34) to bind at (a1; a2). This value depends on

the function N(a2), which is speci�ed next.

The private rewards function: It is assumed that

n(x2) = 7:5
p
x2 � 8;

and it can then be veri�ed that

N(a2) = �
�
2 + e�

a2+8
72

�
, N 0(a2) =

1

72
e�

a2+8
72 :

With this functional form, k as �xed above now takes the value k = 153:696.

Condition (36) is dealt with in a way that is inspired by how condition (34) was

dealt with. In particular, the parameters in the cost function was chosen such

that (36) is just satis�ed at (a1; a2) and it was then veri�ed that this is su¢ cient

to ensure that the condition is satis�ed globally. This eliminates yet another

degree of freedom from the cost function.

Finishing the example: As explained above, various restrictions have been

used to eliminate several degrees of freedom from (37). To proceed, an arbitrary

but strictly positive value of t22 was chosen. This is essentially just a normal-

ization. This leaves one degree of freedom, t12. After having experimented with

di¤erent values of t12, one was chosen that makes it easier to visualize the di¤er-

ent comparative statics that are possible, in particular that implementation costs

can be locally increasing or locally decreasing in a1 and in a2. The resulting cost

function is (38).

Implementation costs in Figure 1(a) were obtained by substituting c(a1; a2),

k, I(a1), and N(a2) into (32). To obtain expected utility in Figure 1(b), N(a2)
and c(a1; a2) were used in (27) alongside the value of M(a1jw(�)) that satis�es
L-IC2.
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Flatter incentives in the example: From (31),

@
p
w(x1)

@x1
=

�c1(a1; a2)
2N(a2)I(a1)

@l1a1(x1ja1)
@x1

;

the last factor of which is strictly positive by Assumption A2 (MLRP). The �rst

factor is strictly increasing in a2 given c12 � 0 and N 0(a2) > 0. Hence, if the

optimal wage schedules that implement the same a1 but di¤erent a2 intersect,

then the wage schedule associated with the larger a2 must be steeper at that

point. Therefore, the optimal contracts can cross at most once.

C Flatter incentives

This section formalizes the intuition that incentives are �atter when the agent is

induced to work less hard.

The standard way of thinking of a contract is as a mapping from the signal,

x1, to the wage, w. However, this is not the only way to think about a contract.

First, note that the optimal contract depends on the signal x1 only through

the likelihood-ratio, l1a1(x1ja1). Second, the utility function V (�; a2) is used to
evaluate the incentives for e¤ort on the job for any given contract. Di¤erent utility

functions gives di¤erent incentives, even for the same wage schedule. Combining

these two observations leads to the idea of translating the contract into a mapping

from the likelihood-ratio to the agent�s utility. In other words, for any given

realization of the likelihood-ratio, the contract gives the agent a certain amount

of utils. In the current model, however, utility also depends on a2.

Now �x two contracts, bw and ew, that optimally induce interior actions (a1;ba2)
and (a1;ea2), respectively. Assume ba2 > ea2. It turns out that as long as the agent
uses any utility function V (�; a2) with a2 2 [ea2;ba2] to evaluate incentives, there is
a sense in which incentives for e¤ort on the job are �atter with ew than with bw.
Proposition 6 For any a2 2 [ea2;ba2], the covariance between V ( ew(x1); a2) and
l1a1(x1ja1) is strictly smaller than the covariance between V ( bw(x1); a2) and l1a1(x1ja1).
Proof. The proof follows almost trivially from L-IC1. By de�nition, EU1(a1;ba2j bw(�)) =
0. Since EU12 < 0, it then holds that EU1(a1; a2j bw(�)) > 0 for all a2 < ba2. By
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similar reasoning, EU1(a1; a2j ew(�)) < 0 for all a2 > ea2. Combining the two yieldsZ
V ( bw(x1); a2)l1a1(x1ja1)g1(x1ja1)dx1 � c1(a1; a2)

�
Z
V ( ew(x1); a2)l1a1(x1ja1)g1(x1ja1)dx1;

for all a2 2 [ea2;ba2], with at least one strict inequality. Since the likelihood-

ratio has mean zero, the �rst term is the covariance between V ( bw(x1); a2) and
l1a1(x1ja1), while the last term is the covariance between V ( ew(x1); a2) and l1a1(x1ja1).
This concludes the proof.

Proposition 6 implies that the slope of a regression of V ( ew(x1); a2) on l1a1(x1ja1)
is strictly smaller than the slope of a regression of V ( bw(x1); a2) on l1a1(x1ja1). The
regression irons out the non-linearities in the agent�s utility and thereby presents

a way to think about �average�incentives. The slope can be thought of as the av-

erage piece-rate, measured in utils, for a marginal increase in the likelihood-ratio.

Future research is planned to pursue other implications of this idea.

D A reinterpretation of the reduced problem

Only L-IC1 and L-IC2 enter the reduced problem. Although these are equality

constraint, for the sake of argument imagine weakening L-IC2 by turning it into

an inequality constraint, such that the constraints can be writtenZ
V (w(x1); a2)g

1
a1
(x1ja1)dx1 � c1(a1; a2) = 0 (39)Z

[�V2(w(x1); a2)] g1(x1ja1)dx1 � c(a1; a2) � �c(a1; a2)� c2(a1; a2): (40)

In comparison, consider the following contracting problem. First, a2 is a �xed

parameter in the agent�s utility function (alternatively, the principal can dictate

its value). Second, the agent has a �split personality�when it comes to evaluating

the contract. He uses the utility function V (w; a2) to evaluate incentives but

the utility function �V2(w; a2) to evaluate the merits of participation. Third,
the agent�s reservation utility depends on the principal�s recommendation, with
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u(a1; a2) = �c(a1; a2) � c2(a1; a2) describing this reservation utility. Evidently,
(39) and (40) de�ne the incentive compatibility constraint and the participation

constraint, respectively, in this particular contracting problem.

Note that reservation utility in this model is strictly decreasing in a1. Thus,

the personality that decides on participation is (i) more risk averse and (ii)

experiences some kind of self-satisfaction from working hard, thus lowering the

threshold for participation when the agent expects to be working hard. Since this

side of the agent�s personality is more risk averse, it is more put o¤ by any risk

included in the contract. On the other hand, it is �intrinsically motivated� to

work hard. If this e¤ect is strong enough, implementation costs may be decreasing

in a1, as illustrated in Example 1 and Proposition 5.

Next, note that the standard argument described in Section 2 can be used

to prove that the �participation constraint�must bind. Hence, the inequality

constraint e¤ectively becomes an equality constraint, as in the reduced problem.

Thus, the two models are essentially equivalent for a �xed action.

E Common agency

Given a2, the principal considers the distribution of private rewards to be �xed.

However, the outside rewards are sometimes derived from other principal-agent

relationships. This is the case when the agent holds several jobs. In such cases

of common agency, principals are strategically interacting with each other.

Bernheim and Whinston (1986) were �rst to consider such situations. How-

ever, they assume that every principal observes the same information. Thus, any

principal can observe and verify how well the agent performed for other prin-

cipals. Bernheim and Whinston (1986) establish that the equilibrium action is

implemented at a total cost that coincides with the total cost that would have

obtained if the principals could collude (or merge). As Bernheim and Whinston

(1986) explain: �We can always view a principal as constructing his incentive

scheme in two steps: he �rst undoes what all the other principals have o¤ered

and then makes an �aggregate�o¤er [...]. Clearly, if we are at an equilibrium, each

principal must, in this second step, select an aggregate o¤er that implements the

equilibrium action at minimum cost.�On the other hand, competition between
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principals typically distorts the equilibrium action away from the second-best.

The model in the current article instead assumes that outside rewards are

private. That is, any given principal cannot observe how well the agent performs

for another principal. Holmström and Milgrom (1988) use the term �disjoint

observations�to refer to such a setting.

Holmström and Milgrom (1988) use the LEN model to show that the equilib-

rium action is implemented in a cost-minimizing manner when signals are inde-

pendent. That is, given independence, Bernheim andWhinston�s (1986) result on

joint observations extends to disjoint observations in the LEN model. The under-

lying reason is that independence together with linear contracts and exponential

utility imply so much �separability�that nothing is gained from collusion.

Now, the current model does not have the bene�t of the same degree of

separability. A complete analysis of the common agency problem in this setting

is outside the scope of the article but is planned for future research. However, a

natural conjecture is that the equilibrium action is implemented at higher than

minimum costs. Thus, the model has a source of distortion that is absent in

Bernheim and Whinston (1986) and Holmström and Milgrom (1988).
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