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Abstract

The canonical moral hazard model is extended to allow the agent to

face endogenous and non-contractible uncertainty. The agent works for

the principal and simultaneously pursues outside rewards. The contract

o¤ered by the principal thus manipulates the agent�s work-life balance. The

participation constraint is slack whenever it is optimal to distort the agent�s

work-life balance away from life compared to a symmetric information

benchmark. Then, the agent�s expected utility is high and he faces �atter

incentives. Such contracts may be optimal when the two activities are

strong substitutes in the agent�s cost function or when reservation utility

is low.
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1 Introduction

The principal-agent model has been tremendously in�uential in economics. How-

ever, by treating leisure as an exogenous black box, the canonical model in many

ways ignores that a rich part of the agent�s life takes place outside the o¢ ce.

In reality, workers are not just passive consumers when they are o¤ the job.

For instance, Bryson and MacKerron (2017) document that the leisure activi-

ties that people are the most happy engaging in all involve physical or mental

exertion.1 More broadly, non-work activities include home production, see e.g.

Becker (1965). The agent devotes time and attention to a range of activities from

the mundane to the extraordinary, like a complicated do-it-yourself renovation.

Moonlighting represents yet another relevant activity.

Hence, it is more accurate to think of the agent as multi-tasking: He invests

e¤ort in two arenas, summarized here as �work�and �life�. In this article, the

latter more broadly refers to whatever activities the agent is pursuing when he is

not working for the principal (leisure, home production, moonlighting).

This article proposes a multi-tasking model in which the agent decides how

hard to work on the job and how hard to pursue non-contractible outside rewards.

Rewards from the two sources are substitutes. Likewise, e¤ort devoted to the two

activities are substitutes in the agent�s cost function. A key point then is that

the contract manipulates the agent�s entire work-life balance. This is enough to

twist familiar intuition, with important consequences.

For instance, under normal circumstances the principal can calibrate a re-

duction in the wage schedule in a way that does not alter incentives on the job,

although doing so may discourage participation. However, in the current model

declining wages spur the agent to substitute e¤ort towards �life�and away from

�work.�Similarly, a steepening of the wage schedule is normally taken to imply

stronger incentives for work e¤ort. Although this direct e¤ect still exists, there is

now an additional countervailing indirect e¤ect. Speci�cally, a steep wage sched-

ule implies more risk, which causes the job to become less attractive to the risk

averse agent. This e¤ect again encourages a substitution of e¤ort away from

1Examples include going to a concert, exercising, gardening, hiking, pursuing a hobby, etc.
Passive activities such as watching TV or browsing the internet are much further down the list.
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work. The latter e¤ect dominates if the two activities are strong substitutes.

Steepening the contract is then self-defeating as e¤ort on the job declines.

The principal cares about work-life balance to the extent that it in�uences

the cost of incentivizing work. It may be optimal to keep the wage schedule

relatively �at. With less risky labour income, the incentive to supplement with

private rewards diminishes. As the agent is less distracted by life, he may now

increase e¤ort at work despite the �atter wage schedule. The average wage can

then be decreased. However, as previously explained, wages cannot be reduced

too much without destroying incentives. Thus, the agent may earn rent in excess

of his reservation utility. In summary, (i) the wage schedule is relatively �at

and (ii) the agent earns high expected utility. Much of the article is devoted to

formalizing this intuition and understanding when these features are optimal.

These properties set the model apart from more standard models and may

help resolve some common criticisms of the latter. First, standard models predict

a binding participation constraint. This is arguably somewhat puzzling in light

of amble evidence that employed people are happier than unemployed people, see

e.g. Clark and Oswald (1994). Second, a common objection is that real world

incentives appear weaker than what the standard model suggests.

Englmaier and Leider (2012) develop a reciprocity-based model in which the

agent becomes �intrinsically motivated�to repay the principal�s kindness when

he is o¤ered a generous contract. Thus, �atter extrinsic incentives are needed

and they go hand in hand with higher expected utility. The current article�s

explanation is instead based on endogenizing the agent�s work-life balance.

The formal analysis requires an examination of the interplay between partic-

ipation and incentive constraints. The symmetric information benchmark is a

useful starting point. Here, the principal can dictate e¤ort towards both work

and life all while o¤ering a �xed wage. Given the wage and work e¤ort, it is

optimal to permit the agent to pursue the level of life that maximizes his utility.

The participation constraint can then be satis�ed at the lowest possible wage.

Under asymmetric information, however, the participation constraint inter-

acts with the incentive constraint on life. At low levels of life, the job must be

made more attractive in order to compensate for low private rewards and secure

participation. This is consistent with disincentivizing life because private rewards
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are less of a draw when the job is attractive. Hence, the two constraints are com-

patible. Note that a job with a low expected wage may still be attractive to the

agent if it entails very little risk. Under reasonable assumptions, the incentive

constraint is the stricter constraint. Thus, the only way to entice the agent to

reduce his level of life below the symmetric information level is by granting him

utility above reservation utility. In contrast, the two constraints con�ict when the

aim is to induce the agent to aggressively pursue life. Participation requires very

high rewards to compensate for high e¤ort costs, but this tends to disincentivize

life. In some cases, it is impossible to write a contract that resolves this con�ict.

The purpose of distorting life is to minimize the cost of incentivizing work.

There is a trade-o¤. Pushing the agent to lower his pursuit of private rewards

tightens the incentive constraint on life as he must be persuaded to divest from

life. However, this leads to a weakening of the incentive constraint on work as

the agent�s marginal cost of e¤ort is reduced. The second e¤ect is stronger when

the two activities are strong substitutes. Then, it is optimal to skew the agent�s

work-life balance away from life. Flat incentives now serve a dual purpose. First,

they make the job attractive. Wages can then be lowered to the principal�s bene�t

while still disincentivizing life. Second, as the agent is not pursuing life too hard,

�at incentives are su¢ cient to incentivize work e¤ort. Of course, there is also a

limit to how �at the wage schedule can be made without destroying incentives for

work. The second-best contract is exactly such that a perturbation that makes

it marginally steeper or �atter has no �rst-order e¤ect on work e¤ort.

The participation constraint is more likely to be slack the lower reservation

utility is. Then, the symmetric information level of life is high because a low wage

is enough for participation but this spurs the agent to seek private rewards. Mar-

ginal costs are therefore high and it is more likely to be bene�cial to disincentivize

life. However, this necessitates giving the agent supernormal rents.

Work-life balance is a worthy topic of study in its own right. Nevertheless, the

standard one-task model ignores the issue. Similarly, the dominant multi-tasking

model is structured too rigidly to address the topic in a completely satisfactory

way. The Linear-Exponential-Normal (LEN) model due to Holmström and Mil-

grom (1987, 1991) can allow for private rewards but only in such a way that there

is essentially no interaction between rewards. As a result, for any given level of ef-
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fort on the job, the principal is unable to manipulate how hard the agent pursues

private rewards. Thus, in this application the LEN model is hardly a multi-

dimensional model after all. The current model is more �exible and provides a

more nuanced understanding of work-life balance.

Holmström and Milgrom (1991) consider a teacher who teaches both �basic

skills�and �higher-order thinking skills.�Basic skills can be tested, thus yielding

a contractible signal. On the other hand, although they cannot be measured or

directly rewarded, the teacher may experience some degree of satisfaction from

teaching higher-order skills. Holmström and Milgrom (1991) argue that good test

scores should be rewarded less than might be expected. The reason is that the

only way to induce more e¤ort on teaching higher-order skills in their model is

to disincentivize the teaching of basic skills. Basic skills must be sacri�ced for

higher-order skills. This is not the case in the current model.

Thus, the two models yield �at incentives for di¤erent reasons and under

di¤erent circumstances. In Holmström and Milgrom (1991), �at incentives dis-

courage e¤ort on the task that yields a contractible signal and the agent then

substitutes e¤ort towards the other task. In the current model, �atter incentives

can also be used when the principal wishes to maintain a constant e¤ort on the

former task but to independently induce lower e¤ort on the latter task.

The analysis combines ideas from Grossman and Hart (1983) with techniques

used in the �rst-order approach, see Rogerson (1985), Jewitt (1988), Conlon

(2009), and Kirkegaard (2017). Only the latter allows multi-tasking. The techni-

cal contribution is to extend these methods to multi-tasking with private rewards.

2 Model and preliminaries

The problem

The agent performs two �tasks�, a1 and a2. For simplicity and unless a statement

is made to the contrary, assume that ai 2 [ai;1), i = 1; 2. A bounded domain is
discussed in Section 5. The �rst task, a1, captures the agent�s e¤ort on the job,

as a result of which a contractible signal, x1, is produced. The signal�s marginal

distribution is G1(x1ja1). The second task, a2, re�ects the agent�s pursuit of a
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private reward. The agent receives a possibly non-monetary reward, x2, which is

determined by the marginal distribution function G2(x2ja2). Assume xi belongs
to a compact interval, [xi; xi], which is independent of ai. Let g

1(x1ja1) and
g2(x2ja2) denote the densities and assume that gi(xijai) > 0 for all xi 2 [xi; xi]
and all ai 2 [ai;1).2 Note that each marginal distribution depends only on one
task. This is further strengthened by assuming that x1 and x2 are independent.

Assumption A1 (Independence): Outcomes are independent, i.e. given a1
and a2, the joint distribution is given by

F (x1; x2ja1; a2) = G1(x1ja1)G2(x2ja2): (1)

Independence implies that results are driven solely by the interactions in the

agent�s utility function. There are no confounding e¤ects from a motive to ma-

nipulate the dependence structure. Moreover, there is no reason to think that

the quality of the foliage on the agent�s hike is correlated with how lucky he is on

the job. Likewise, the agent�s luck on the job is unlikely to in�uence how many

riders he gets on the weekend when he drives for Uber.

A contract is a function w(x1) that speci�es the wage paid to the agent for

any signal realization. If the agent takes action (a1; a2) and the rewards on and

outside the job are w and x2, respectively, then the agent�s Bernoulli utility is

v(w; x2)� c(a1; a2); (2)

where v is a rewards function and c is a cost function. Thus, given the contract

w(x1), the agent�s expected payo¤ from action (a1; a2) is

EU(a1; a2jw(�)) =
Z Z

v(w(x1); x2)g
1(x1ja1)g2(x2ja2)dx1dx2 � c(a1; a2). (3)

The principal is risk neutral. He derives some direct bene�t from the agent�s

action. For clarity, it is �rst assumed that he only cares directly about a1. Hence,

a2 is of interest to the principal only insofar as it can be manipulated to minimize

2Throughout, all exogenous functions are assumed continously di¤erentiable to the requisite
degree. For brevity, statements to that e¤ect are omitted from the numbered assumptions. A
detailed discussion of assumptions can be found in the Online Appendix.
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the cost of implementing a1. The bene�t function is denoted B(a1). Expected

wage costs if the agent is induced to take action (a1; a2) are denoted E[wja1; a2].

Assumption P1 (The principal�s preferences): The principal is risk neu-

tral, with expected utility B(a1)� E[wja1; a2].

The principal�s problem is to maximize his expected utility, subject to the

participation constraint (P) and the incentive compatibility constraint (IC), or

max
a1;a2;w

B(a1)�
Z
w(x1)g

1(x1ja1)dx1

st: EU(a1; a2jw(�)) � u (P)

(a1; a2) 2 arg max
(a01;a

0
2)2[a1;a1]�[a2;a2]

EU(a01; a
0
2jw(�)); (IC)

where u is the agent�s reservation utility. Any action that solves the problem is

referred to as a second-best action.

The problems faced by the two parties have now been outlined in broad terms.

However, more speci�c assumptions are required to solve these problems and

generate economic insights. Thus, to continue, de�ne li(xijai) = ln gi(xijai). Let
liai(xijai) denote the likelihood-ratio, i.e. the derivative of l

i(xijai) with respect
to ai, i = 1; 2, and assume it is bounded. The next assumption is standard.

Assumption A2 (MLRP):The marginal distributions have the (strict)monotone

likelihood ratio property, i.e. for all ai 2 [ai; ai] it holds that

@

@xi

�
liai(xijai)

�
=
@2 ln gi(xijai)
@ai@xi

> 0 for all xi 2 [xi; xi] : (4)

Rogerson (1985) considers a one-signal, one-task model and assumes that the

distribution function is convex in the one-dimensional action. Kirkegaard (2017)

allows multiple tasks and signals and assumes that the distribution function is

convex in the many-dimensional action. The same assumption is useful here.

Assumption A3 (LOCC): F (x1; x2ja1; a2) satis�es the lower orthant convexity
condition;F (x1; x2ja1; a2) is weakly convex in (a1; a2) for all (x1; x2) and (a1; a2).

Assumptions A1�A3 describe the agent�s �technology�. His preferences are

described by Bernoulli utility of the form in (2). The rewards function v(w; x2)
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is strictly increasing and strictly concave in each argument, vi > 0 > vii, i = 1; 2,

where subscripts denote derivatives.3 The domain is R� [x2; x2]. The assumption
that w 2 R ensures that wages are interior. Thus, wages may be negative.
Rewards and tasks are substitutes. Thus, assume that v12 < 0; the higher x2

is, the lower is the marginal utility of additional employment income. Assume

also that v2(w; x2) ! 0 as w ! 1. Thus, the marginal bene�t of additional
private rewards vanishes as the agent�s labor income becomes unboundedly high.

It should be acknowledged that rewards or actions are sometimes complements

in the real world. The model does not cover such situations.

Likewise, a1 and a2 are weak substitutes in the cost function, or c12 � 0. That
is, the marginal cost of increasing a1 is higher when a2 is high. The assumption

is satis�ed in e.g. Holmström and Milgrom�s (1991) leading model, the e¤ort and

attention allocation model, where costs depend only on a1+a2. The cost function

is strictly increasing and jointly convex in (a1; a2).

Assumption A4 (Preferences): The agent�s Bernoulli utility is v(w; x2) �
c(a1; a2); v(w; x2) is strictly increasing and strictly concave in each argument,

with domain R� [x2; x2], while c(a1; a2) is strictly increasing and weakly convex
in (a1; a2). Rewards are strict substitutes; v12(w; x2) < 0 with v2(w; x2) ! 0 as

w !1. Tasks are weak substitutes; c12(a1; a2) � 0.

Preliminary observations

At this stage, the properties of the endogenous contract are unknown. To get

a feel for the problem, however, it is useful to begin by considering the agent�s

problem if the contract w(x1) is di¤erentiable and strictly increasing.

Definition (regular contracts): The contract is said to be regular if it is

di¤erentiable and strictly increasing, with w0(x1) > 0 for all x1 2 [x1; x1].

Now, EU(a1; a2jw(�)) is strictly concave when the contract is regular. In this
case, the agent�s optimal action is unique. All proofs are in the Appendix.

3It is not necessary for v(w; x2) to be jointly concave in (w; x2) for the agent�s expected
utility to be concave. See Lemma 1, below, and its proof. For comparison, in Rogerson (1985)
concavity of the Bernoulli utility function is used only to prove that the contract is monotonic.
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Lemma 1 Assume that A1�A4 hold. For any regular contract, EU is strictly

concave in (a1; a2), with EU11 < 0, EU22 < 0,and EU11EU22 �EU212 > 0. More-
over, the two tasks are strict substitutes, or EU12 < 0.

To compare the agent�s problem to a more standard problem, de�ne

V (w; a2) =

Z
v(w; x2)g

2(x2ja2)dx2 (5)

as the expected utility of a �xed wage, given that the agent exerts e¤ort a2
towards private rewards. Note that the expectation is over x2, given a2. Then,

EU(a1; a2jw(�)) =
Z
V (w(x1); a2)g

1(x1ja1)dx1 � c(a1; a2): (6)

If a2 is exogenous, the expression in (6) is identical to expected utility in a stan-

dard model where Bernoulli utility and costs are parameterized by a2. In this case,

it is well known that (P) must bind if the contract w(x1) is optimal. Otherwise,

construct another contract, bw"(x1), such that V ( bw"(x1); a2) = V (w(x1); a2) � "
for all x1, with " > 0. The two contracts induce the same a1 and both satisfy (P)

if " is small enough. As bw"(x1) entails lower wages, w(x1) cannot be optimal.
The problem is more complex when a2 is endogenous. The agent jointly

chooses a1 and a2. As always, there is a direct incentive e¤ect on a1 from changes

in the contract. There is also an indirect e¤ect that comes from the accompanying

change in a2. Simply put, an increase in a2 tends to trigger a substitution away

from a1. Contract changes may now have unexpected implications.

First, consider shifting the wage schedule down from w(x1) to bw"(x1). The
job is now less rewarding and attention shifts towards pursuing private rewards.

The implication is that reducing wages makes it harder to prevent life incentives.

Then, as private rewards increase, the incentive to pursue labor rewards lessens.

Due to this �substitution e¤ect,�a2 increases and a1 decreases.

Proposition 1 Assume that A1�A4 hold. Fix a regular contract, w(x1), and let
(a�1; a

�
2) denote the interior action that it induces. If the agent participates, let

(a01; a
0
2) denote the action that is induced when w(x1) is replaced by bw"(x1) where

V ( bw"(x1); a�2) = V (w(x1); a�2)� ", " > 0. Then, a01 < a�1 and a02 > a�2.
8



Proposition 1 demonstrates that the argument used to show that (P) binds

in a standard model breaks down when a2 is endogenous. The new incentive

constraint interferes. Indeed, a key point of the article is that (P) may not bind.

Second, consider replacing w(x1) by some other regular contract, bw�(x1), that
has the same expected wage at e¤ort a1 = a�1. Moreover, assume that bw�(x1)
is greater than w(x1) when the likelihood-ratio l1a1(x1ja�1) is positive and smaller
when the likelihood-ratio is negative. Thus, the two contracts cross once andbw�(x1) is in some sense steeper. At a�1, the distribution of wages under the new
contract is a mean-preserving spread over wages under the original contract. Were

the agent to keep constant his action at (a�1; a
�
2), the additional risk would lower his

expected utility. However, the increased risk impacts incentives for two reasons.

Most directly, it encourages higher e¤ort on the job, as in a standard model.

On the other hand, the added risk makes the job a worse source of rewards and

the agent therefore also has an added incentive to increase his pursuit of private

rewards. This again creates an incentive to substitute away from e¤ort on the

job. Due to this indirect e¤ect, it is ambiguous whether a1 increases or decreases.

Thus, it is possible that steepening the contract is self-defeating and leads

the agent to lower a1. Intuitively, this is more likely when the tasks are strong

substitutes. As c12 > 0, the increase in a2 forces c1 higher, thus diminishing

incentives for a1. This e¤ect is more pronounced the higher c12 is. On the other

hand, incentives for a2 depend on c2. If c22 is small, then c2 is not very responsive

and a small contract change may then trigger a large change in a2, which may

then in turn have a larger impact on a1. In sum, the equilibrium response is more

likely to be a lowering of a1 when c12 is large and c22 is small.

The next result formalizes this intuition under the additional assumption that

V112(w; a2) > 0. That is, the harder the agent pursues private rewards, the �less

negative�V11 is, suggesting that the agent in a sense becomes less risk averse.

Proposition 2 Assume that A1�A4 hold and that V112(w; a2) > 0. Fix a regular
contract, w(x1), and let (a�1; a

�
2) denote the interior action that it induces. If the

agent participates, let (a01; a
0
2) denote the action that is induced when w(x1) is

replaced by the contract bw�(x1) described above. Then, a01 < a�1 and a
0
2 > a�2 if

c12(a1; a2) is su¢ ciently large relative to c22(a1; a2).
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Propositions 1 and 2 suggest that it may be optimal to �atten the wage

schedule. When c12 is large enough, the agent then increases a1. The new and

�attened wage schedule can then be shifted down to bring a1 back down to a�1.

This last step lowers implementation costs. However, Proposition 1 also implies

that there is a limit to how much the wage can be reduced without destroying

incentives. Thus, it is possible that (P) may be slack. On the other hand, when

c12 is small the principal can shift down the wage schedule but reincentivize e¤ort

on the job with a steeper wage schedule. The principal may be able to continue in

this manner until (P) becomes binding. Thus, to be clear, there are environments

where (P) binds. However, because the novelty is that there are circumstances

under which (P) is slack and the contract is relatively �at, much of the article

naturally focuses on pursuing and explaining this possibility.

The intuition behind Propositions 1 and 2 and the interplay between c12 and

c22 reappear later in the article. Formally, however, these results are not without

their weaknesses. First, they assume that contracts are regular. Second, they

start from an arbitrary incentive compatible contract and then consider speci�c

types of contract changes. The rest of the article studies optimal contracts and

veri�es that the intuition is robust. The link between the agent�s work-life balance

and the participation constraint under the second-best contract is also clari�ed.

Towards optimal contracts

Generalizing an idea due to Grossman and Hart (1983), a three-step procedure

is used to attack the problem. The �rst step derives the cheapest contract that

induces any �xed (a1; a2) action. The second step holds �xed e¤ort on the job,

a1, and minimizes implementation costs with respect to a2. The third step max-

imizes the principal�s net payo¤ over a1. Note that the bene�t function B(a1) is

irrelevant for the �rst two steps. The �rst step is conceptually and technically

the most challenging. Several of the article�s economic insights are derived from

the second step. The third step is less interesting and is largely ignored.

Consider the �rst step. A good place to start is by examining interior actions

�rst. For such actions, incentive compatibility necessitates that expected utility

achieves a stationary point at that action, or EU1 = 0 = EU2. These constraints
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are referred to as the �local�incentive compatibility constraints. The shorthand

L-ICi is used to refer to the constraint that EUi = 0, i = 1; 2, whereas L-IC

refers to L-IC1 and L-IC2 together. Now imagine minimizing wage costs subject

to (P) and L-IC. If the resulting solution is a regular contract, then the agent�s

problem is concave and L-IC is indeed su¢ cient for incentive compatibility. A

key technical challenge is thus to establish that the candidate solution is regular.

Thus, holding �xed the action, consider the solution to the above problem.

Let � � 0 denote the multiplier on the participation constraint. Let �1 and �2
denote the multipliers on L-IC1 and L-IC2, respectively. The optimal wage if x1
is observed is implicitly characterized by the necessary �rst order condition

�+ �1l
1
a1
(x1ja1) =

1

V1(w(x1); a2)
� �2

V12(w(x1); a2)

V1(w(x1); a2)
: (7)

The last term in (7) generally complicates the analysis. To begin, a special model

speci�cation in which this complication is minimized is considered.

Definition (The multiplicative model): In the multiplicative model, the

rewards function is

v(w; x2) = �m(w)n(x2); (8)

where m and n are strictly negative functions that are strictly increasing and

strictly concave.

The unusual signs are chosen so that rewards are substitutes in the multi-

plicative model and not complements. Imagine private rewards are monetary

and that the agent has constant absolute risk aversion over total income. Then,

utility from rewards is v(w; x2) = �e�r(w+x2), r > 0. This �ts the multiplicative
model, with m(w) = �e�rw and n(x2) = �e�rx2 . The agent�s expected utility
now takes the convenient form

EU(a1; a2jw(�)) = �
�Z

m(w(x1))g
1(x1ja1)dx1

��Z
n(x2)g

2(x2ja2)dx2
�
�c(a1; a2):

The �rst factor can be interpreted as the agent�s expected utility from labor in-

come and the second factor as expected utility from private rewards. For brevity,
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denote the former M(a1jw(�)) and the latter N(a2), such that

EU(a1; a2jw(�)) = �M(a1jw(�))N(a2)� c(a1; a2):

Throughout the article, the analysis relies on a fundamental relationship

between incentive compatibility, particularly L-IC2, and the participation con-

straint. This relationship is especially strong in the multiplicative model. Here,

if the interior action (a1; a2) is to be implemented, L-IC2 requires that

�M(a1jw(�))N 0(a2)� c2(a1; a2) = 0,

and only M(a1jw(�)) can be manipulated to achieve this. As utility from labor

income is now pinned down by L-IC2, the principal has no more degrees of freedom

with which to manipulate the agent�s expected utility, holding �xed the action.

Hence, expected utility at the target action is already fully determined, with

EU(a1; a2jw(�)) =
N(a2)

N 0(a2)
c2(a1; a2)� c(a1; a2): (9)

Thus, given the �xed action and an incentive compatible contract, it would be

purely coincidental if (P) happens to bind. In particular, if (9) exceeds u then the

participation constraint is redundant as it is implied by incentive compatibility.

Conversely, if (9) is below u then (P) must necessarily be violated. In this case,

the action is not implementable as the agent would refuse the contract. In fact, it

can be veri�ed that expected utility as derived in (9) is decreasing in both levels

of a1 and a2 that are to be implemented. Hence, given u, (P) is redundant if a1
and a2 are small enough but it is violated if they are large enough. The reason

behind this phenomenon is explained in the next section.

Turning now to the shape of the optimal contract, a distinguishing feature of

the multiplicative model is that V (w; a2) = �m(w)N(a2) and so the last term in
(7) reduces to N 0(a2)=N(a2). As this is independent of w, (7) is virtually identical

to its counterpart in a standard model. Standard arguments then apply. Thus,

�1 > 0 and the contract is regular; see Rogerson (1985, footnote 8) or Jewitt

(1988, Lemma 1). This con�rms that the optimal contract that induces the

action in question �provided it is implementable �does indeed take the form in
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(7). In principle, the two binding constraints, L-IC1 and L-IC2, can be used to

solve for �1 and �2. As (P) is redundant if the action is implementable, � = 0.

The following example uses the multiplicative model to illustrate several of

the article�s main �ndings. Details are in the Online Appendix.

Example 1: Assume that ai 2 [0; 1], i = 1; 2, and that

Gi(xijai) =
�
1� e�

ai+8

72

�
x2i +

�
e�

ai+8

72

�
xi; xi 2 [0; 1]:

It can be veri�ed that Assumptions A1�A3 are satis�ed. Assume also that

c(a1; a2) = 0:7313a2 + 0:405a
2
1 + 0:005a

2
2 + 0:09a1a2:

For computational ease, this example is constructed in such a way that cij(a1; a2)

is constant, i; j = 1; 2. Likewise, c11c22� c212 = 0. Finally, the rewards function is

v(w; x2) = �
�
2
p
w � k

�
(7:5

p
x2 � 8) ;

where w 2 [0; (k
2
)2], x2 2 [0; 1] and k = 153:696. Assumption A4 is satis�ed, with

the exception that w cannot be any real number. The restriction that w � 0

is simply to ensure that v(w; x2) is well-de�ned. The role of k is to ensure that

m(w) = 2
p
w � k is strictly negative as required in the multiplicative model.

Thus, the exact value of k has been chosen to ensure that any optimal contract

features strictly positive wages and that m(w) < 0. It is for similar reasons that

ai is bounded above in this example. Note that because optimal wages are strictly

positive, results are not driven by a limited liability constraint.

The example exhibits a number of interesting properties.

Locally increasing or decreasing implementation costs: Figure 1(a) depicts im-

plementation costs for interior actions, assuming they are all implementable (i.e.

ignoring the participation constraint). Implementation costs are decreasing in a2
when a1 is small but increasing in a2 when a1 is large. There is an intermediate

range of a1 where implementation costs are u-shaped in a2. Thus, the optimal

level of a2 depends on a1 and it may or may not be small. Finally, implementation

costs are u-shaped in a1, given a2. The intuition is explained in Section 4.
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Slack participation constraint: To continue towards the second step of the princi-

pal�s problem ��nding the optimal a2 given a1 �imagine that he wants to induce

a1 = 0:9. As a point of reference, (9) implies that any contract that induces

action (a1; a2) = (0:9; 0:9) gives the agent expected utility of �194. Thus, if
u = �194, any (a1; a2) = (0:9; a2) with a2 � 0:9 can be induced. In this case,

the optimal a2 to induce alongside a1 = 0:9 is clearly a2 = 0 as this is where im-

plementation costs are minimized; see Figure 1(a).4 Here, the agent�s expected

utility is �189:5 > �194, by (9).

Weaker incentives: In this example, the optimal contracts that induce the same

a1 but di¤erent a2 cross each other at most once. The optimal contract that

induces the lower a2 crosses the other one from above and thus features wages

that are more �compressed.� For example, the optimal contract that induces

(a1; a2) = (0:9; 0:9) is depicted as the dashed curve in Figure 1(b) alongside

the optimal contract that more cheaply induces (0:9; 0) (the unbroken curve).

Intuitively, the more compressed contract carries less risk and is therefore more

attractive. As work is now a good source of utility, the agent relaxes his pursuit of

outside rewards. In fact, in this particular example the more compressed contract

also features a lower expected wage.

a1

0.0
0.2

2a

0.4
0.20.0

2150

0.4
0.6

0.80.6 0.8
1.0 1.0

2200
E[w]

2250

2300

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1000

2000

3000

4000

5000

w

x1

(a) Implementation costs. (b) Comparing contracts.

Figure 1: Implementation costs and optimal contracts.
4Implementation costs as shown in Figure 1(a) are valid also along the a2 = 0 boundary.

Here, incentive compatibility requires EU2 � 0. However, by using a version of the standard
argument before Proposition 1, it can never be optimal to leave this constraint slack.
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Incentives, utility, and work-life balance: Summarizing the above �ndings, the

contract that minimizes the cost of implementing a1 = 0:9 skews the agent�s

work-life balance away from life compared to the contract that gives the agent

exactly reservation utility (a2 = 0 instead of a2 = 0:9). The agent faces weaker

incentives and earns higher expected utility in the former case.5 N

The remainder of the article is devoted to further understand and generalize

the points made by the example. Two issues are particularly important to clarify.

The �rst is when and why (P) might be made redundant by incentive compati-

bility. Section 3 is devoted to this issue. The second is to characterize optimal

contracts and to determine under which circumstances it is optimal to induce an

action for which (P) is redundant. This is taken up in Section 4.

3 Participation versus incentive constraints

This section shows that there are actions for which the participation constraint

is redundant even beyond the multiplicative model. An intuitive argument that

ignores L-IC1 is given �rst. Then, a stronger assumption on the rewards function

is introduced which makes it possible to account for L-IC1 as well.

Participation versus private rewards

Two benchmarks are examined. The �rst focuses on L-IC2 and the second on

(P), while ignoring all other constraints. This makes it possible to isolate the

implications of the two constraints and to ultimately better compare them. Note

that L-IC1 is ignored throughout. Hence, it is as if a1 is contractible.

First, consider a partial-information benchmark in which a1 is observable and

contractible but a2 and x2 are not. Thus, there is an incentive problem with

respect to a2. The participation constraint is ignored. To begin, assume a �xed-

wage contract is used to incentivize a2. The agent�s utility is then concave in

a2. If an interior a2 is to be induced, the wage must be chosen to satisfy the

5The contract can also be compared to the optimal contract if a2 = 0 holds exogenously.
Under exogenous a2, (P) binds and the wage in this example simply decreases such that
v(w(x1); x2) and V (w(x1); a2) shift down by a constant. However, this does not generalize.
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agent�s �rst-order condition. Letting L(a1; a2) denote the wage that is incentive

compatible with Life, the condition is that V2(L(a1; a2); a2)� c2(a1; a2) = 0, or

EU2(a1; a2jL(a1; a2)) = 0, a2 2 (a2;1): (10)

By concavity, L(a1; a2) is unique when a2 is interior. The assumption that

v2(w; x2) ! 0 as w ! 1 implies that V2(w; a2) ! 0 as w ! 1, which in
turn means that L(a1; a2) exists. This is the only role this assumption plays.

Without it, it may be impossible to incentivize low levels of a2. It can be veri�ed

that L(a1; a2) is strictly decreasing in a2. This can be thought of as formalizing

the idea that higher a2 are incentivized when the job is a poor source of rewards.

If a2 = a2, any �xed wage for which EU2(a1; a2jw) � 0 is incentive compatible.
This holds for large wages and (10) just gives a lower bound. See Figure 2.

Second, consider the symmetric information benchmark where the principal

can dictate the agent�s action, (a1; a2). There is by de�nition no incentive problem

here. Given the agent is risk averse, the cheapest way to ensure participation is

to o¤er a �xed-wage contract. Let W (a1; a2ju) denote the wage so derived, with

V (W (a1; a2ju); a2)� c(a1; a2) = u: (11)

Unlike L(a1; a2), W (a1; a2ju) depends on, and is increasing in, u. If V is bounded
above, as in the case of CARA utility, then it may be impossible to �nd a wage

that ensures participation. To proceed, it is innocuous to limit attention to a1
for which there exists some a2 such that (11) has a solution.

It is easy to verify that W (a1; a2ju) is strictly convex in a2. Holding a1 �xed,
let s(a1ju) denote the cost-minimizing level of a2 to dictate. This is the unique
value of a2 that minimizes W (a1; a2ju). The �rst order condition is that

@W (a1; a2ju)
@a2

= �EU2(a1; a2jW (a1; a2ju))
V1(W (a1; a2ju); a2)

equals zero at a2 = s(a1ju). By de�nition of L(a1; a2), this means that

W (a1; s(a1ju)ju) = L(a1; s(a1ju)):
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In other words, s(a1ju) is found where W (a1; a2ju) and L(a1; a2) coincide. See
Figure 2. Hence, a2 = s(a1ju) maximizes the agent�s utility given the �xed wage
W (a1; s(a1ju)ju) and given that a1 has been dictated. Thus, there is no real
reason to dictate a2 as the agent would voluntarily select the correct value.

To understand why W (a1; a2ju) is u-shaped, begin by examining small a2.
Here, private rewards are small and therefore large labor rewards are needed to

secure participation. Similarly, when a2 is large, the costs of e¤ort are large and

once again the job must be richly compensated. For moderate a2 and in particular

for a2 = s(a1ju), private rewards are reasonably high and costs reasonable low.
Consequently, a lower wage is required to achieve reservation utility.

The relative magnitudes of a1 and s(a1ju) re�ect the agent�s work-life balance
under symmetric information. Two comparative statics are of interest. First,

in Figure 2, an increase in u shifts W (a1; a2ju) up, and with it the point of
intersection with L(a1; a2). That is, s(a1ju) is decreasing in u. If u is very large,
however, then W (a1; a2ju) must be large and the agent is always happy to take
a small pay-cut to be allowed to lower a2. In this case, s(a1ju) = a2. The article
focuses on the more interesting case where s(a1ju) is interior, or s(a1ju) > a2.
Second, because a1 and a2 are substitutes, it follows directly that s(a1ju) is

decreasing in a1. Higher a1 drives up the marginal costs of a2 and makes it less

attractive to pursue private rewards. Thus, it is in the agent�s and therefore the

principal�s interest to lower a2. In other words, a1 and s(a1ju) move in opposite
directions under symmetric information.

-

6

a2

L;W

L(a1; a2)

s(a1ju)s(a1ju0)

W (a1; a2ju)

W (a1; a2ju0)

W (a1; a2ju00)

Figure 2: (P) and L-IC2 with �xed-wage contracts, where u00 > u0 > u.
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Returning to Figure 2, note that when s(a1ju) is interior,

W (a1; a2ju) < L(a1; a2) for a2 < s(a1ju): (12)

The two benchmarks share the properties that L-IC1 is ignored and that �xed-

wage contracts are used. In such settings, (12) implies that L-IC2 imposes more

of a constraint on the principal than does (P) when the agent�s work-life balance

is to be skewed away from life, or a2 < s(a1ju). In fact, if both L-IC2 and (P)
are present simultaneously, the participation constraint is redundant when small

a2 are to be implemented with a �xed-wage contract. Incentive compatibility

dictates a �xed wage of L(a1; a2), but this gives the agent an expected utility

that exceeds his reservation utility, which only requires a wage of W (a1; a2ju).
Hence, (P) can be ignored for such actions. Note that this holds even if a2 = a2.

However, as attention shifts to the asymmetric information setting at the heart

of the article, L-IC1 also comes into play. This constraint rules out �xed-wage

contracts. Thus, the above argument is no longer quite strong enough to establish

that (P) is redundant for �xed a2 < s(a1ju). Conversely, for a2 > s(a1ju) any
�xed-wage contract that satis�es L-IC2 must violate (P), but this need not be

true for variable-pay contracts. The multiplicative model is a special case where

the aforementioned conclusions hold for any type of contract. The reason is that

L-IC2 uniquely identi�es the expectation of m(w(�)), which is also what (P) relies
on. Hence, in that model a2 is implementable if and only if a2 � s(a1ju).
Outside the multiplicative model, L-IC2 nails down the expected value of

V2(w(�); a2), yet this is not necessarily enough to determine the expectation of
V (w(�); a2). The resulting challenge is taken up next. Note, however, that even
if a2 > s(a1ju) is implementable, W (a1; a2ju) of course still represents a lower
bound on implementation costs. By convexity, W (a1; a2ju) explodes as a2 grows
large and it follows that very high a2 cannot be second-best.

Decreasing absolute risk aversion

Proposition 2 already suggests that V112 > 0 may play an important role in the

analysis. In fact, a slightly stronger property turns out to be useful. To motivate

this, a �nal but intuitive assumption is imposed on the agent�s rewards function.
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Assumption A5 (Log-supermodularity): The agent�s marginal utility of

labor income, v1(w; x2), is log-supermodular in (w; x2), or

@2 ln v1(w; x2)

@w@x2
� 0 for all w and all x2 2 [x2; x2] . (13)

Assumption A5 is equivalent to assuming that

@

@x2

�
�v11(w; x2)
v1(w; x2)

�
� 0 for all w and all x2 2 [x2; x2] . (14)

Thus, the agent�s absolute risk aversion over labor income is decreasing in x2.

That is, the agent is less sensitive to risk in labor income when the private reward

is high. If the private reward is monetary and v(w; x2) takes the form u(w+ x2),

then Assumption A5 says that the agent has decreasing absolute risk aversion

with respect to total income. In the multiplicative model, the inequality in (13)

is an equality. Assumption A5 imposes structure on the function V (w; a2).

Lemma 2 Given A1�A5, the function V (w; a2) has the following properties:

1. V (w; a2) is strictly increasing and strictly concave in both arguments,

Vi(w; a2) > 0 > Vii(w; a2); i = 1; 2:

2. w and a2 are strict substitutes, V12(w; a2) < 0.

3. V1(w; a2) is log-supermodular in (w; a2),

@

@a2

�
�V11(w; a2)
V1(w; a2)

�
=

@

@w

�
�V12(w; a2)
V1(w; a2)

�
� 0: (15)

4. The function [�V2(w; a2)] is strictly increasing and strictly concave in w,
and it has a weakly higher coe¢ cient of absolute risk aversion than V (w; a2).

Lemma 2 has two uses. Part 4 of the lemma is used in the next subsection

to �nish the argument that (P) is sometimes redundant. Part 3 implies that the

last term in (7) is monotonic in wages. This in turn implies that the contract is
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regular if �1 > 0 � �2. Technically, then, the challenge becomes to verify that

�1 > 0 � �2. This is pursued in Section 4.

Lemma 3 Given A1-A5 and P1, w(x1) as de�ned in (7) is unique whenever
�1 � 0 � �2. Moreover, w(x1) is regular if �1 > 0 � �2.

Variable pay and the participation constraint

Fix some action that is to be induced, with a2 > a2. L-IC2 can be written asZ
[�V2(w(x1); a2)] g1(x1ja1)dx1 = �c2(a1; a2):

The last part of Lemma 2 suggests that the function [�V2(�; a2)] can be thought
of as a pseudo-utility function. Then, use [�V2(�; a2)] to evaluate the certainty
equivalent, CE�V2(a1; a2jw(�)), of the contract, with

V2(CE�V2(a1; a2jw(�)); a2) =
Z
[�V2(w(x1); a2)] g1(x1ja1)dx1:

Now, L-IC2 nails down this certainty equivalent; CE�V2(a1; a2jw(�)) must exactly
equal L(a1; a2), by de�nition of the latter. Let CEV (a1; a2jw(�)) denote the cer-
tainty equivalent when evaluated using V (�; a2). To ensure participation, this
must be no smaller than W (a1; a2ju). Hence, L-IC2 and (P) are equivalent to

CE�V2(a1; a2jw(�)) = L(a1; a2) and CEV (a1; a2jw(�)) � W (a1; a2ju):

By Lemma 2, V (�; a2) is less a¤ected by risk than [�V2(�; a2)]. Hence, V (�; a2)
has a larger certainty equivalent than [�V2(�; a2)]. Thus,

CEV (a1; a2jw(�)) � CE�V2(a1; a2jw(�)) = L(a1; a2); (16)

where the equality comes from L-IC2. The point here is that L-IC2 implies a

lower bound on the utility experienced by V (�; a2).
Next, assume that s(a1ju) > a2 and imagine inducing some a2 2 (a2; s(a1ju)].

From (12), L(a1; a2) is no smaller than W (a1; a2ju). Even with a �xed-wage
contract, V (�; a2) happily accepts a contract that is incentive compatible for
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[�V2(�; a2)]. Adding risk necessitates compensating [�V2(�; a2)] but this overcom-
pensates the less risk averse V (�; a2). Hence, V (�; a2) still accepts the contract.
Formally, combining (12) and (16) yields

CEV (a1; a2jw(�)) � CE�V2(a1; a2jw(�)) = L(a1; a2) � W (a1; a2ju);

where the last inequality is strict when a2 < s(a1ju). Thus, any L-IC2 contract
satis�es (P). Hence (P) is redundant. The argument extends to a2 = a2, as the

incentive constraint here is that CE�V2(a1; a2jw(�)) � L(a1; a2).

Proposition 3 Assume A1�A5 hold, �x a1, and assume that s(a1ju) > a2.

Then, the participation constraint is redundant if the (a1; a2) action that is to

be induced satis�es a2 � s(a1ju).

La¤ont and Martimort (2002) present a single-task model without private

rewards. However, their utility function is not separable in income and e¤ort.

Although (P) is not redundant in their model, it may still be slack. In a stan-

dard separable model, an increase in the agent�s base wage would necessitate an

increase in performance pay in order to restore incentives. In La¤ont and Marti-

mort (2002), however, the agent is more risk averse when he works harder. The

increase in base wage may then be more valuable if the agent works hard than

if he does not. Thus, it may be possible to lower performance pay and maintain

incentives at a reduced cost. This yields a more compressed wage schedule, which

may also be to the agent�s advantage and leave (P) slack.6 Hence, there are some

similarities between the models�conclusions. In the current model, a change in

the contract changes a2, which changes V (w; a2) and c(a1; a2). This indirectly

creates a type of non-separability between the contract and e¤ort on the job, a1.

Proposition 3 says that (P) is redundant when the action is held �xed in such a

way that work-life balance is skewed away from �life�compared to the symmetric

information benchmark. This does not mean that (P) is redundant or even slack

in the bigger problem where implementation costs are minimized over a2. After

all, the optimal a2 could be large. This problem is addressed in the next section.

6The agent has only two actions available to him in La¤ont and Martimort�s (2002) model.
Alvi (1997) justi�es the �rst-order approach in a fairly similar model with a continuous action.
He does not discuss the participation constraint in any detail.
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Corollary 1 Assume A1�A5 hold, �x a1, and assume that s(a1ju) > a2. Then,
the agent must earn strictly more than reservation utility whenever his work-life

balance is skewed further away from life than under symmetric information, i.e.

whenever a2 < s(a1ju). Conversely, if the agent only earns reservation utility,
then his work-life balance must be skewed towards life, or a2 > s(a1ju).

Finally, V (�; a2) and �V2(�; a2) are equally risk averse in the multiplicative
model and (16) holds as an equality. This is why any action with a2 > s(a1ju)
cannot be implemented. However, outside the multiplicative model, actions for

which a2 > s(a1ju) may be implementable and may or may not leave (P) slack. It
is impossible to determine exactly how large a2 must be for (P) to come into play.

Given how W (a1; a2ju) explodes with a2 it is natural that (P) binds eventually.

4 Optimal contracts and work-life balance

The fact that (P) can sometimes be ignored leads to the idea of examining a

�reduced problem�where the only constraints are L-IC1 and L-IC2. The reduced

problem predicts implementation costs that are increasing in a2 when c12 is suf-

�ciently high. Thus, there are cases where the optimal asymmetric information

value of a2 is below s(a1ju), in which case the reduced problem is indeed valid.

Implementation costs

Fix an action that is to be implemented. The principal now aims to minimize

the cost of implementing this action. To this end, consider the reduced problem

max
wR

�
Z
wR(x1)g1(x1ja1)dx1

st: EUi(a1; a2jwR(�)) = 0; i = 1; 2: (L-IC)

This is a reduced problem because it ignores (P) and implicitly assumes that

L-IC is su¢ cient for incentive compatibility. Thus, solving the reduced problem

must give a lower bound on implementation costs for any interior action. Let

E[wRja1; a2] denote this bound and E[wja1; a2] the true implementation costs.
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It turns out that the contract that solves the reduced problem is regular and

therefore incentive compatible. The contract must then also satisfy (P) if a2 �
s(a1ju), by Proposition 3. For such actions, the reduced problem thus correctly

identi�es the optimal contract. The argument holds even if a2 = a2 because the

cheapest way to satisfy the incentive constraint that EUi(a1; a2jwR(�)) � 0 or

CE�V2(a1; a2jwR(�)) � L(a1; a2) is to make it bind, as in the reduced problem.

Theorem 1 Assume that A1�A5 and P1 holds. For any action, the solution to
the reduced problem is a regular contract that takes the form in (7), with � = 0

and �1 > 0 > �2. Moreover, the optimal contract that induces a particular action

(a1; a2) solves the reduced problem if a1 > a1, s(a1ju) > a2, and a2 � s(a1ju).

Thus, holding a1 �xed, the reduced problem characterizes the lowest possible

implementation costs, or E[wja1; a2] = E[wRja1; a2], for any a2 � s(a1ju). For
higher a2, the reduced problem describes a lower bound on implementation costs.

The idea is to use E[wRja1; a2] to proxy E[wja1; a2] in the �rst step of the solution
procedure. The second step holds �xed a1 and uses E[wRja1; a2] to identify a
candidate for an optimal level of a2, with aR2 2 argmina2 E[wRja1; a2], to induce
alongside a1. If there is a solution with aR2 � s(a1ju), then Theorem 1 applies

and an optimal contract that induces a1 has been identi�ed.

Corollary 2 Assume A1�A5 and P1 hold, �x a1, and assume that s(a1ju) >
a2. If E[w

Rja1; a2] is minimized with respect to a2 at any aR2 � s(a1ju), then
E[wja1; a2] is also minimized at aR2 and implementation costs are E[wRja1; aR2 ].

A weaker but still su¢ cient condition is that the contract from the reduced

problem satis�es (P), which can always be checked after the reduced problem has

been solved. However, this is automatic, and need not be checked, if aR2 � s(a1ju).
Section 5 outlines a general solution method that rigorously solves the problem

regardless of what the second-best action is and whether or not (P) binds.

Leaning on Corollary 2, the next aim is to understand when a level of a2 below

s(a1ju) is optimal. The discussion of L-IC2 in Section 3 might seem to suggest

that low a2 cannot be optimal as the job must be made very attractive in order to

induce the agent to divest from life. However, with L-IC1 necessitating variable
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pay, this is not the same as saying that the expected wage must be high. The

job can be attractive if the wage is less risky. Now note that by disincentivizing

life, it is precisely the case that �atter incentives are required to incentivize work.

The question then is whether these �atter incentives on their own make the job

attractive enough to disincentivize life. If so, the expected wage can be reduced to

the principal�s bene�t. If not, the expected wage must be increased to discourage

life, but then it is better to incentivize the agent to work harder at life instead.

Thus, there is a trade-o¤ when incentivizing lower a2.

Another way of phrasing the trade-o¤ is to note that lower a2 makes it easier

to induce a1 and thus relaxes the L-IC1 constraint. However, the agent�s incentive

to push a2 higher must be kept in check and tightens the L-IC2 constraint. The

optimal level of a2 weighs o¤ these costs and bene�ts. Example 1 con�rms that

implementation costs may be increasing or decreasing in a2 due to this trade-o¤.

It is possible to more precisely identify when one side of the trade-o¤ dom-

inates the other. Holding �xed the agent�s reward function, the contract that

solves the reduced problem relies on c1 and c2 but it is independent of any other

features of the cost function, like c22 or c12. By the Envelope Theorem, however,

the latter a¤ect how implementation costs change with a marginal change in a2.

It turns out that it is always possible to �nd a cost function that satis�es As-

sumption A4 and for which E[wRja1; a2] is locally increasing in a2 and another
for which it is locally decreasing in a2.

Proposition 4 Fix the agent�s reward function and �x an interior action (a�1; a
�
2)

and (c1(a�1; a
�
2); c2(a

�
1; a

�
2)). Then, there exists cost functions that satisfy Assump-

tion A4 and for which E[wRja1; a2] is locally increasing (decreasing) in a2 at
(a�1; a

�
2) if c12(a

�
1; a

�
2) is large (small) relative to c22(a

�
1; a

�
2) > 0.

Proposition 4 implies that implementation costs are locally increasing in a2
around e.g. s(a1ju) if c12 is large relative to c22. A large value of c12 �or a large
degree of substitutability between a1 and a2 �implies that it becomes much easier

to satisfy the L-IC1 constraint when a2 is lowered. At the same time, a small

value of c22 means that the L-IC2 constraint is impacted less by a decrease in

a2 and only becomes slightly harder to satisfy despite having lowered a2. Thus,
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Corollary 2 is more likely to come into e¤ect when c12 is large relative to c22.7

A large value of c12 and a small value of c22 mean that the marginal costs of

a1 is impacted more than the marginal costs of a2 when a2 increases. Imagine, for

instance, that a2 is the number of hours the agent works a night shift on a tedious

but otherwise undemanding assembly line for another employer. It is plausible

that a signi�cant side e¤ect of an extra hour on the line is that it is much more

di¢ cult to concentrate on the more demanding primary job the next day.

As E[wRja1; a2] is independent of u, so is the value (or values) of a2 that
minimizes it. In contrast, s(a1ju) is decreasing in u. Hence, when u is very low,
the agent is desperate for rewards and he works very hard at life under symmetric

information. Thus, the condition in Corollary 2 is more likely to hold the lower

u is. Once this condition is met, the optimal work-life balance is una¤ected by

further decreases in u under asymmetric but not under symmetric information.

Thus, the two diverge. In other words, the lower u is, the more likely is it that

the agent�s work-life balance is skewed away from life and (P) is slack.

Finally, it is worthwhile to complete the circle and reconsider steepening or

�attening the wage schedule, as in Proposition 2. Fix some a1 = a�1 > a1.

Consider some a�2 2 argmina2 E[wja�1; a2], such that a�2 is an optimal level of life
to implement alongside a�1. Let w

�(x1) denote the contract that induces (a�1; a
�
2)

and assume that a�2 > a2 and that a
�
2 � s(a1ju). Consider some alternative

contract, bw�(x1) = (1� �)w�(x1) + � bw(x1);
where bw(x1) also has the same expected wage as w�(x1) in the event that the
agent chooses a1 = a�1. However, bw(x1) and thus bw�(x1) may be steeper or �atter
than w�(x1). If � = 0, the contract bw�(x1) is simply the original contract w�(x1).
The idea is now to perturb w�(x1) by marginally increasing �, starting from

� = 0, and examining the resulting change in a1.

Corollary 3 Assume that (a�1; a
�
2) is interior with a

�
2 2 argmina2 E[wja�1; a2] and

a�2 � s(a�1ju). Then, there is no �rst-order e¤ect on a1 from a small mean-

preserving perturbation of the optimal contract, w�(x1).
7Care should be taken when comparing Proposition 4 and Example 1. The former is a

local comparative statics result that �xes an action but allows di¤erent cost functions to be
compared. Example 1 �xes a speci�c cost function but allows global changes in the action.
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The proof in the Appendix is instructive and ties together the optimal shape of

the contract in (7) with Proposition 4 and the style of arguments in Proposition 2.

Corollary 3 implies that the optimal contract is so �nely tuned that a perturbation

has no impact on e¤ort on the job, although a2 changes. The direct e¤ect on work

incentives that comes from the contract change is exactly nulli�ed or balanced

out by the indirect e¤ect on work incentives that results from the induced change

in a2. This is just another way of saying that a�2 is optimal; inducing a marginal

change in a2 has no �rst-order e¤ect on the cost of inducing a�1. More generally, it

is intuitive that there is no contract with the same expected wage that induces a

higher a1. Otherwise, the new contract could be shifted down, as in Proposition

1, to reincentivize a�1 at a lower cost. However, this contradicts the assumption

that the original contract is optimal. The use of Proposition 1 formally requires

that the contract is regular but the intuition seems to be more general.

Work-life balance and �atter incentives

In Example 1, any contract that induces a low level of life features �atter incen-

tives than the contract that would have maintained the symmetric-information

level of work-life balance. At a broad intuitive level this result carries over to the

general model, with the caveat that �weaker incentives�is a poorly de�ned term

that is hard to formalize given that optimal contracts are typically non-linear.

However, it is unambiguously true that the agent�s marginal cost of e¤ort on

the job, c1(a1; a2), is lower and his marginal utility of labor income, as measured

by V1(w; a2), is higher when a2 is small. Hence, the contract must be made �atter

in some average sense in order to restore incentives on the job when a smaller a2
is induced. The Online Appendix presents one possible way of formalizing this.

E¤ort on the job

The logic that lead to Proposition 4 also makes it possible to examine how im-

plementation costs vary with e¤ort on the job, a1.

Proposition 5 Fix the agent�s reward function and �x an interior action (a�1; a
�
2)

and (c1(a�1; a
�
2); c2(a

�
1; a

�
2)). Then, there exist cost functions that satisfy Assump-
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tion A4 and for which E[wRja1; a2] is locally increasing (decreasing) in a1 at
(a�1; a

�
2) if c11(a

�
1; a

�
2) > 0 is large (small) relative to c12(a

�
1; a

�
2).

There are two competing e¤ects from incentivizing higher e¤ort on the job.

First, the marginal cost of e¤ort on the job, c1, changes, with c11 measuring

the size of the change. Likewise, the marginal cost of e¤ort in pursuit of private

rewards, c2, changes, with c12 capturing the speed of the change. When c2 changes

quickly (c12 is large), the agent who works harder on the job is much less inclined

to work hard outside the o¢ ce. Thus, L-IC2 becomes substantially cheaper to

satisfy. If c1 changes slowly at the same time (c11 is small), then the cost of

satisfying L-IC1 only increases slightly. Then, the combined costs of L-IC1 and

L-IC2 fall and it is cheaper to induce marginally higher e¤ort on the job.

The fact that implementation costs may be locally decreasing in e¤ort on the

job is in marked contrast with the standard model. However, remember that a2
typically adjusts alongside a1 in the current model.

5 Discussion and extensions

This section brie�y discusses some elements of, and extensions to, the basic model.

The Online Appendix contains a more thorough discussion of assumptions and

extensions. The model�s relationships to the literatures on private investments

and common agency are also reviewed there.

The bene�t function

For conceptual simplicity, the principal�s bene�t function was assumed to depend

only on the agent�s e¤ort on the job, a1. However, this is immaterial to the

reduced problem, which is concerned only with implementation costs but not at

all with bene�ts. Thus, it is possible to allow the bene�t function to depend

on a2 as well, in which case it can be written, with some abuse of notation, as

B(a1; a2). Step one of the three-step solution procedure is una¤ected.

Depending on the application, B(a1; a2)may be increasing or decreasing in a2.

For instance, in Holmström and Milgrom�s (1991) example of the multi-tasking

teacher, it is natural to assume that the bene�t to the public is increasing in e¤ort
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directed towards teaching either type of skill. In many other settings, however,

B(a1; a2) is likely to be decreasing in a2. This might be the case if, for instance,

the agent is moonlighting with a competitor to the principal. Alternatively, a2
might describe a government o¢ cial�s inclination to engage in corrupt activities.

Finally, Milgrom and Roberts (1988) describe many examples of �in�uence activ-

ities�internally in an organization. Here, an employee exerts e¤ort to in�uence

or bias the decisions of his superiors to his own gain.

Recall that (P) is slack if a small a2 is induced and that this �as demonstrated

by Example 1 and explained by Proposition 4 �may be optimal even if B(a1; a2)

is independent of a2. If B(a1; a2) is decreasing in a2 then there is an additional

reason to induce smaller a2 and it becomes even more likely that (P) is slack.

Risk neutrality and limited liability

The agent has been assumed to be risk averse. It is well known that a moral

hazard problem may also exist in environments where the agent is risk neutral

but is protected by a limited liability constraint. The easiest setting in which

to think about such a problem is when private rewards are monetary as well

and v(w; x2) = w + x2. This is fundamentally di¤erent from the model analyzed

above because now v12 = 0 rather than v12 < 0. This lack of interdependency

between rewards means that a1 and a2 are related only through the cost function,

c(a1; a2). As explained more thoroughly in Example 2 of the Online Appendix,

this implies that for any a1 that is to be implemented, there is exactly one level of

a2 that can be induced alongside it. Consequently, the agent�s action is not truly

multi-dimensional. In sum, with a risk neutral agent �or more precisely when

v12(w; x2) = 0 � the model essentially reduces to a standard one-dimensional

principal-agent model, whether limited liability is a factor or not. Incidentally,

the LEN model should be seen in this light because in that model the agent�s

certainty equivalent is additively separable in rewards.

Bounded actions

Possible complications arise if a2 is bounded above by some a2 <1. The starkest
way to see this is to assume that u is very low. Then, (P) must bind at a2.
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Otherwise, the contract can be shifted down, as in Proposition 1, until (P) binds.

This works because it is impossible to further increase a2. Formally, incentive

compatibility at (a1; a2) requires EU2 � 0, but this only places an upper bound
on CE�V2. Moreover, when u is very low, the reduced problem is valid for all

a2 < a2 and so (P) is slack whenever a2 < a2 is implemented. Thus, there

is a discontinuity at a2 = a2, and implementation costs drop here. A further

reduction in u does not e¤ect the reduced problem or the implementation costs

of a2 < a2. However, it lowers the cost of implementing a2, as these costs are

determined by a binding (P). In other words, when u is very low, the second-best

action involves a2 = a2, (P) binds, and EU2 � 0 is slack. Consequently, the

contract looks exactly the same as in a standard model.

The First-Order Approach

The reduced problem describes how to optimally implement any given action with

a2 � s(a1ju). However, the second-best action may in some cases involve higher
a2 and the reduced problem may then be unable to identify the optimal contract.

This problem is addressed here, where a slightly di¤erent solution method is

developed. The principal�s bene�t function is allowed to be non-increasing in a2.

Assumption P2 (The benefit function): The principal is risk neutral and

never bene�ts from higher a2, i.e. B2(a1; a2) � 0 for all (a1; a2).

With Assumption P2 in hand, the so-called �rst-order approach can be justi-

�ed. The �rst-order approach maximizes the principal�s net payo¤ subject only

to (P) and L-IC, as was discussed before deriving (7). The proof of the validity

of the �rst-order approach utilizes and extends arguments in Rogerson (1985).8

Theorem 2 Assume that A1�A5 and P2 hold and that any second-best action
(a1; a2) is interior. Then, the �rst-order approach is valid. The optimal contract

is regular and takes the form in (7), with �1 > 0 > �2.

Proof. See the Appendix.

8For more details and discussion see the working paper version, Kirkegaard (2016), where
the main focus is on justifying the �rst-order approach.
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6 Conclusion

This article extends the canonical principal-agent model to allow the agent to

pursue private, stochastic, and possibly non-monetary rewards. Conceptually,

this way of �unpacking�leisure recognizes that rewards earned while not on the

job are also endogenous. Hence, the principal manipulates not only the agent�s

e¤ort on the job but also his �work-life balance�through the contract design.

The model�s non-separability between rewards from labor income and other

sources is central to the article�s economic insights. For instance, it makes the

participation constraint slack for certain actions. Likewise, the tendency to sub-

stitute toward life and away from work complicates the incentive e¤ects of shifting

or steepening the contract.

Likewise, at the technical level, it is also this non-separability that represents

the main challenge. Thus, the article�s technical contribution is to propose a so-

lution method to deal with private rewards without assuming separability. Recall

that separability is implicit in the LEN model, for instance. Thus, the article�s

results demonstrate that non-separability have important economic implications.

In Englmaier and Leider (2012), the agent is awarded high utility to trigger

feelings of reciprocity. A change in government policy that increases the value of

the outside option makes the principal seem relatively less generous. The agent

then becomes less intrinsically motivated and the principal will typically want to

change the contract.9 In standard models, contract design is also very sensitive

to the outside option because the participation constraint binds. In the current

model, a small change in reservation utility does not impact the problem when

the participation constraint is redundant. Hence, there is no need to change the

contract. Thus, the contract is less sensitive to changes in the outside option.

9A similar e¤ect exists in the e¢ ciency-wage model of Shapiro and Stiglitz (1984). There,
higher unemployment bene�ts decrease the penalty to being �red for shirking. To restore
incentives, �rms are forced to increase wages, which in turns leads to increased unemployment.
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Appendix

Proof of Lemma 1. Integration by parts with respect to x2 yields

EU(a1; a2) =

Z �
v(w(x1); x2)�

Z
v2(w(x1); x2)G

2(x2ja2)dx2
�
g1(x1ja1)dx1�c(a1; a2):

(17)

It is well known that Assumption A2 (MLRP) implies that Giai(xijai) < 0 for all
interior xi. Moreover, Assumptions A2 and A3 together imply that Giaiai(xijai) >
0 for all xi 2 (xi; xi), i = 1; 2. To see this, note that A3 (LOCC) necessitates that
Giaiai � 0 and G1G2G1a1a1G

2
a2a2

�
�
G1a1G

2
a2

�2 � 0. At any interior (x1; x2), the

last term is strictly positive, by A2 (MLRP). Thus, G1a1a1 > 0 and G
2
a2a2

> 0 are

necessary. Since v2 > 0, the �rst term in (17) is therefore strictly concave in a2.

The second term is weakly concave in a2 by Assumption A4. Thus, EU22 < 0.

Assuming the contract is regular, another round of integrating by parts, this

time with respect to x1, yields

EU(a1; a2jw(�)) = �
Z
v1(w(x1); x2)w

0(x1)G
1(x1ja1)dx1 �

Z
v2(w(x1); x2)G

2(x2ja2)dx2

+

Z Z
v12(w(x1); x2)w

0(x1)G
1(x1ja1)G2(x2ja2)dx1dx2

+v(w(x1); x2)� c(a1; a2): (18)

Thus,

EU12(a1; a2jw(�)) =
Z Z

v12(w(x1); x2)w
0(x1)G

1
a1
(x1ja1)G2a2(x2ja2)dx1dx2�c12(a1; a2).

Since Giai(xijai) < 0 for all xi 2 (xi; xi), i = 1; 2, the last two parts of Assumption
A4, v12 < 0 and c12 � 0, imply that EU12(a1; a2jw(�)) < 0 for all regular contracts.
A similar argument proves that EU11(a1; a2jw(�)) < 0 if the contract is regular.
Since v1; v2 > 0 > v12 and G1(x1ja1), G2(x2ja2), G1(x1ja1)G2(x2ja2), and

c(a1; a2) are all convex in (a1;a2), it follows from (18) that EU(a1; a2jw(�)) is
concave because it is the sum of concave functions. To prove that EU11EU22 �
EU212 > 0 when w(x1) is regular, let P (a1; a2) denote the �rst line in (18) and let

Q(a1; a2) denote the remainder, such that EU = P + Q. Note that P11; P22 < 0
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but P12 = 0. Similarly, Q11; Q22 < 0 and by concavity Q11Q12 �Q212 � 0. Now,

EU11EU22 � EU212 =
�
P11P22 � P 212

�
+
�
Q11Q22 �Q212

�
+ [P11Q22 + P22Q11 � 2P12Q12]

= [P11P22] +
�
Q11Q22 �Q212

�
+ [P11Q22 + P22Q11] > 0;

since the �rst and third terms are strictly positive and the second term is non-

negative. This implies strict concavity.

Proof of Proposition 1. For brevity, write EU for EU(a1; a2jw(�)). Since
w(x1) is regular, Lemma 1 implies that EU11 < 0, EU22 < 0, and EU12 < 0.

Moreover, EU11EU22 � EU212 > 0, or

�EU12
EU22

>
�EU11
EU12

: (19)

Given the agent�s problem is concave, the optimal action is determined by the

�rst order conditions EU1 = 0 and EU2 = 0. In (a1; a2) space, the curves along

which EU1 = 0 and EU2 = 0 have slope

da2
da1 jEU1=0

=
�EU11
EU12

< 0 and
da2
da1 jEU2=0

=
�EU12
EU22

< 0:

The optimal interior action (a�1; a
�
2) is found where these two curves intersect. By

(19) the curve where EU1 = 0 crosses the curve where EU2 = 0 exactly once,

from above. See Figure 3.

Similarly, write EU " for EU(a1; a2j bw"(�)). Note that bw"(x1) is also a regular
contract. Next, note that by design of bw"(x1), EU "1 = 0 at (a�1; a

�
2). That is,

both the EU1 = 0 curve and the EU "1 = 0 curve go through the point (a
�
1; a

�
2).

However, by (17) in Lemma 1,

EU2(a1; a2jw(�)) = �
Z �Z

v2(w(x1); x2)G
2
a2
(x2ja2)dx2

�
g1(x1ja1)dx1 � c2(a1; a2)

< �
Z �Z

v2( bw"(x1); x2)G2a2(x2ja2)dx2� g1(x1ja1)dx1 � c2(a1; a2)
= EU2(a1; a2j bw"(�));

or EU2 < EU "2 for all (a1; a2). The inequality follows from v12 < 0, bw"(x1) <
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w(x1), and G2a2 < 0. Then, EU
"
22 < 0 implies that the curve where EU

"
2 = 0 lies

above the curve where EU2 = 0. This rules out that a
0
1 = a

�
1. See Figure 3.

Imagine that a
0
1 > a

�
1. Then, since EU

"
1 = 0 crosses the curve where EU

"
2 = 0

from above at (a01; a
0
2), the EU

"
1 = 0 curve must lie above the EU

"
2 = 0 curve for

any a1 < a01. Thus, EU
"
1 (a

�
1; a

�
2) > 0, which is a contradiction. Thus, a

0
1 < a

�
1. As

the EU "2 = 0 curve lies above the EU2 = 0 curve, it then follows that a
0
2 > a

�
2.

-
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Figure 3: Solving the agent�s problem.

Proof of Proposition 2. The same logic as in Proposition 1 is used. First,

EU1(a
�
1; a

�
2j bw�(�))�EU1(a�1; a�2jw(�)) = Z [V ( bw�(x1); a�2)� V (w(x1); a�2)] g1a1(x1ja�1)dx1 > 0

since both terms under the integral have the same sign. Thus,

EU1(a
�
1; a

�
2j bw�(�)) > EU1(a�1; a�2jw(�)) = 0:
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Similarly,

EU2(a
�
1; a

�
2j bw�(�)) =

Z
V2( bw�(x1); a�2)g1(x1ja�1)dx1 � c2(a�1; a�2)

>

Z
V2(w(x1); a

�
2)g

1(x1ja�1)dx1 � c2(a�1; a�2)

= EU2(a
�
1; a

�
2jw(�)) = 0;

where the inequality comes from the assumptions that V2 is convex in w and that

the distribution of wages under bw�(�) is a mean-preserving spread over wages un-
der w(x1). The curvature of V2 in determining incentives is important throughout

the paper and is discussed in more detail later.

To continue, let EU� denote EU(a1; a2j bw�(�)). It has been shown that EU�i >
EUi at (a�1; a

�
2), i = 1; 2. In words, the direct e¤ect of the contract change is to

create incentives to increase both actions. However, as a2 increases, an incentive

to lower a1 is created, which leads to a trade-o¤. To capture this formally,

start by keeping �xed a1 at a�1. As a2 increases, both EU
�
1 and EU

�
2 strictly

decreases since EU�12 < 0 and EU�22 < 0 by Lemma 1. If c12 is large enough

compared to c22, then EU�1 decreases faster than EU
�
2 in a2. If this e¤ect is large

enough, then EU�1 reaches zero before EU
�
2 does. Thus, there is some a

00
2 > a

�
2

such that EU�1 = 0 and EU�2 > 0 at (a�1; a
00
2). The level curve along which

EU�2 = 0 lies above this point. Since both level curves, EU
�
1 = 0 and EU

�
2 = 0,

are downwards sloping, their intersection is to the north-west of (a�1; a
00
2). This

intersection, (a01; a
0
2), describes the new equilibrium action and satis�es a01 < a

�
1

and a02 > a
00
2 > a

�
2.

Proof of Lemma 2. First,

V1(w; a2) =

Z
v1(w; x2)g

2(x2ja2)dx2:

Assumption A4 implies that V (w; a2) is strictly increasing and strictly concave in

w, or V1(w; a2) > 0 > V11(w; a2), just like a standard utility function. Moreover,

A2 (MLRP) and A4 together imply that

V12(w; a2) =

Z
v1(w; x2)g

2
a2
(x2ja2)dx2 < 0.
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The reason is that v1(w; x2) is strictly decreasing in x2 (A4) and that an increase

in a2 makes higher x2 more likely (A2). Similarly, Assumption A4 together with

A2 and A3 (LOCC) imply that V2(w; a2) > 0 and V22(w; a2) < 0, respectively.

This proves the �rst two parts of the lemma.

For the third part, note that A2 (MLRP) is equivalent to the requirement that

gi(xijai) is log-supermodular in (xi; ai), i = 1; 2. Then, the term under the in-

tegration sign in V1(w; a2) is, by A2 (MLRP) and A5 (Log-supermodularity), log-

supermodular in all (three) arguments, (w; x2; a2). In this case, log-supermodularity

is preserved under integration so V1(w; a2) is log-supermodular in its (two) argu-

ments (w; a2); see e.g. Athey (2002, p. 193). This proves the third part of the

lemma.

For the fourth part, �V2(w; a2) is increasing in w by part 2, which means

that �V12(w; a2) > 0. Similarly, the term �V12
V1

in part 3 is weakly decreasing in

w. This is precisely equivalent to �V2 having a larger coe¢ cient of absolute risk
aversion than V , or �V2 being a concave transformation of V . Formally, this can
be seen by carrying out the di¤erentiation in (15). Since V is risk averse, this

necessitates that �V2 is risk averse too, or �V112 < 0.

Proof of Lemma 3. Given �2 � 0, V11 < 0 and (15) imply that the right hand
side of (7) is strictly increasing in w (the derivative is strictly positive). Thus, for

each x1 there is at most one solution to (7), w(x1). Di¤erentiability now follows

from the di¤erentiability of all the components in (7) and the fact that the right

hand side is strictly increasing in w. If �1 > 0, A2 (MLRP) implies that the left

hand side is strictly increasing in x1. Hence, the contract is regular.

Proof of Proposition 3. The proof is in the text.

Proof of Corollary 1. The corollary follows straight away from Proposition

3.

Proof of Theorem 1. The reduced problem produces a contract of the form

in (7), but with � = 0. Thus, there exists a value of x1 for which the left hand

side is zero. Any solution to (7) then requires �2 < 0. Hence, the right hand

side is strictly increasing in w, by A4 and A5. If �1 � 0, the contract is weakly
decreasing, by A2. In this case, EU1 < 0 which violates one of the constraints

of the reduced problem. Hence, �1 > 0. The contract is regular by Lemma 3.
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This completes the �rst part of the proof. For the second part, regularity and

Lemma 1 implies that the contract is incentive compatible. By the assumption

that a2 � s(a1ju), (P) is satis�ed. Hence, the contract is feasible. Thus, it solves
the principal�s problem, given the action.

Proof of Corollary 2. The proof is in the text.

Proof of Proposition 4. The objective function in the reduced problem is

�E[wRja1; a2]. By the Envelope Theorem,

@E[wRja1; a2]
@a1

=

Z
wR(x1)g

1
a1
(x1ja1)dx1 � �1EU11 � �2EU12 (20)

@E[wRja1; a2]
@a2

= ��1EU12 � �2EU22: (21)

Given (a�1; a
�
2), �1 > 0 and �2 < 0 depend, through L-IC, only on c1(a�1; a

�
2)

and c2(a�1; a
�
2) but not on c11(a

�
1; a

�
2), c22(a

�
1; a

�
2), or c12(a

�
1; a

�
2). However, EUij

clearly depends on cij. Thus, these terms in (20) and (21) can be manipulated

by changing (c11; c22; c12). However, Assumption A4 imposes the restrictions that

c11; c22; c12 � 0 and c11c22 � c212 � 0. The two terms in (21) are independent

of c11. The �rst term is increasing and linear in c12 while the second term in

decreasing and linear in c22. Thus, (21) is positive (negative) when c22 is small

(large) compared to c12. Given c22 > 0, it is always possible to �nd a c11 > 0 for

which A4 is satis�ed.

Proof of Corollary 3. Given the contract bw�(x1), let (a1(�); a2(�)) denote
the agent�s action, ignoring (P), with bw0(x1) = w�(x1) and ai(0) = a�i , i = 1; 2.
L-IC1 is Z

V ( bw�(x1); a2(�))g1a1(x1ja1(�))dx1 � c1(a1(�); a2(�)) = 0:
Di¤erentiating with respect to � and evaluating at � = 0 yields

k1 + EU11(a
�
1; a

�
2jw�(�))a01(0) + EU12(a�1; a�2jw�(�))a02(0) = 0; (22)

where

k1 =

Z
V1(w

�(x1); a
�
2) ( bw(x1)� w�(x1)) g1a1(x1ja�1)dx1:
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Similarly, from L-IC2,

k2 + EU12(a
�
1; a

�
2jw�(�))a01(0) + EU22(a�1; a�2jw�(�))a02(0) = 0; (23)

where

k2 =

Z
V12(w

�(x1); a
�
2) ( bw(x1)� w�(x1)) g1(x1ja�1)dx1:

Solving (22) and (23) yields

a01(0) =
k2EU12(a

�
1; a

�
2jw�(�))� k1EU22(a�1; a�2jw�(�))

EU11(a�1; a
�
2jw�(�))EU22(a�1; a�2jw�(�))� EU12(a�1; a�2jw�(�))2

:

The aim is to show that a01(0) = 0. Recall that EU12 and EU22 are strictly

negative and that the denominator is strictly positive. Thus, these factors are all

non-zero.

To proceed, note that

�1k1 + �2k2 =

Z �
�1V1(w

�(x1); a
�
2)l

1
a1
(x1ja�1) + �2V12(w�(x1); a�2)

�
� ( bw(x1)� w�(x1)) g1(x1ja�1)dx1

The �rst term under the integral is exactly 1 for all x1. This follows from (7) and

the fact that � = 0 since a�2 � s(a�1ju). Then,

�1k1 + �2k2 =

Z
( bw(x1)� w�(x1)) g1(x1ja�1)dx1;

which is zero by the assumption that bw(x1) has the same expected value as w�(x1)
given a1 = a�1. It follows that �1k1 = ��2k2. Since �1 > 0 > �2, either both k1
and k2 are zero, or neither of them are. If both are zero, then a01(0) = 0 and the

proof is done. Otherwise, k2
k1
= ��1

�2
and a01(0) is proportional to

a01(0) / k1EU12(a
�
1; a

�
2jw�(�))

�
k2
k1
� EU22(a

�
1; a

�
2jw�(�))

EU12(a�1; a
�
2jw�(�))

�
= k1EU12(a

�
1; a

�
2jw�(�))

�
��1
�2

� EU22(a
�
1; a

�
2jw�(�))

EU12(a�1; a
�
2jw�(�))

�
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Similarly, from the assumption that a�2 is interior and optimal given a
�
1, it must

hold that @E[wRja�1;a�2]
@a2

= 0. From (21) in the proof of Proposition 4, this implies

that �1EU12 = ��2EU22, or
��1
�2
= EU22

EU12
, which then again means that a01(0) = 0.

This completes the proof.

Proof of Proposition 5. The proof follows from (20) in the proof of Proposi-

tion 4. In (20), the �rst two terms are positive while the third term is negative.

All three terms are independent of c22. Holding �xed c12 and c22, the second

term comes to dominate as c11 > 0 explodes. Thus, there is a cost function for

which (20) is strictly positive. On the other hand, �x c11 > 0 and let c12 > 0

and c22 > 0 explode in such a way that the convexity condition c11c22 � c212 � 0
remains satis�ed. Then, the last term dominates and (20) is strictly negative.

Proof of Theorem 2. Consider the following relaxed problem, so named be-

cause the incentive compatibility constraint in the original or �unrelaxed�prob-

lem has been weakened,

max
a1;a2;w

B(a1; a2)�
Z
w(x1)g

1(x1ja1)dx1

st: EU(a1; a2) � u (P)

EUi(a1; a2) = 0; i = 1; 2: (L-IC)

The �rst-order approach is said to be valid if the solution to the relaxed problem

also solves the original or unrelaxed problem and thus identi�es the second-best.

As in Rogerson (1985), a doubly-relaxed problem is utilized. In Rogerson�s one-

task model, the relaxed incentive compatibility constraint, EU1 = 0, is replaced

with the even weaker constraint that EU1 � 0. In the current multi-task model,
the appropriate doubly-relaxed problem assumes that

EU1(a1; a2) � 0 and EU2(a1; a2) � 0:

Rogerson (1985) uses the doubly-relaxed problem to deal with the additional

nonlinearities that arise from having a risk averse principal. Here, it is used

instead to deal with nonlinearities from the additional incentive constraints.

Conveniently, �1 � 0 � �2 must hold in the doubly-relaxed problem. More-
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over, any solution to the doubly-relaxed problem must take the form in (7), with

�1 � 0 � �2. However, wages are constant if �1 = 0. Then, EU1 = �c1 < 0,

which violates the doubly-relaxed constraints. Hence, �1 > 0 and so EU1 = 0.

By Lemma 3, any solution involves a regular contract. By Lemma 1, the agent�s

problem is concave. The contract is then incentive compatible if EU1 = EU2 = 0

at the intended action, which holds if �1 > 0 > �2.

Thus, the next step establishes that �2 < 0. If an interior a2 is optimal in the

doubly-relaxed problem then the principal�s �rst-order condition

B2 + �EU2 + �1EU12 + �2EU22 = 0; (24)

must hold. By Assumption P2, B2 � 0. By Lemma 1, it holds that EU12 < 0

given the contract is regular. Since �EU2 � 0, the �rst three terms in (24) are
thus strictly negative. As EU22 < 0, it is therefore necessary that �2 < 0. Hence,

EU1 = EU2 = 0.

By assumption, any second-best action is interior. Thus, any solution to the

unrelaxed problem must satisfy EU1 = EU2 = 0, which implies that it is feasible

in the doubly-relaxed problem. However, it has just been shown that any inte-

rior solution to the doubly-relaxed problem is feasible in the unrelaxed problem.

Hence, the solutions to the unrelaxed and doubly-relaxed problems coincide. Fi-

nally, the set of feasible contracts is obviously larger in the doubly-relaxed prob-

lem than in the relaxed problem. Then, as the solution to the doubly-relaxed

problem involves an interior action, the solution is also feasible in the relaxed

problem, which must then identify the exact same solution. This completes the

proof.

To clarify, note that the �rst-order approach justi�ed here does not make it

possible to derive implementation costs for actions other than the second-best

(contrary to Theorem 1). Thus, it cannot be used as a means to extend the

comparative statics in Proposition 4 to a2 > s(a1ju) where the reduced problem
may not be valid.
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