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Abstract

There are many facets to heterogeneity in contests. The typical approach

is to focus on di¤erences in preferences or narrowly de�ned abilities. This

paper instead considers a contest model in which performance is stochastic and

described by identity-dependent distributions that are so di¤erent that agents

are unable to replicate the distribution of another�s performance. As a result

of this technological heterogeneity, the favorite, i.e. the agent who is most

likely to win the contest, may no longer view actions as strategic complements.

Compared to other contest models, this in turn changes comparative statics,

policy implications, and the e¤ects of precommitment.
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1 Introduction

Agents in contests can be heterogenous for a wide variety of reasons. College appli-

cants may be from di¤erent socioeconomic backgrounds and have access to varying

resources as they strive to improve their GPA or prepare for the SAT. Candidates for

promotion may have distinct educational backgrounds and professional experiences.

Competing lobbyists or litigators represent di¤erent organizations or clients, each

with their own resources and objectives. Firms in R&D races have di¤erent patents

and institutional knowledge to build on. The resulting heterogeneity can manifest

itself in a multitude of ways. To name a few, agents may value the prize di¤erently,

their budgets may not be the same, and their ability to e¤ect an improvement in their

performance in the contest, or the cost of doing so, may be poles apart. These are

the kinds of heterogeneity that are typically studied in the literature. In equilibrium,

the favorite, i.e. the agent most likely to win the contest, tends to be the agent whose

characteristics are in some way stronger or more advantageous.

Although the agent�s action is productive, his performance in the contest is still

likely to be stochastic. The common approach is to assume that the nature or struc-

ture of the noise is the same for all agents. However, this is restrictive. For instance,

one agent may generally be less error prone than another, or he may become less

susceptible to errors when he works harder while another may become more erratic.

This paper pursues a contest model �the mixture model �that allows idiosyncrasies

of this kind. The extra layer of heterogeneity may override the e¤ects of the charac-

teristics mentioned earlier. For instance, the favorite may care less about the prize,

yet bene�t from being less error-prone than his competitor.

There are now two distinct drivers that determine who is the favorite, each with

potentially di¤erent implications. A standard model like the Tullock contest predicts

that the favorite (underdog) views actions as strategic complements (substitutes) in

two-player contests. However, the opposite may apply in the mixture model. The

practical implication is that it becomes important to understand the root cause of one

agent�s emergence as the favorite, because comparative statics and policy implications

may be di¤erent. For instance, if a contest organizer wants to spur both agents to

work harder, then one option is to increase the prize for the underdog, try to subsidize

his e¤ort, or the like. This incentivizes the underdog to put in more e¤ort. If the

favorite views actions as strategic complements, then he responds by working harder
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too. However, if it is the underdog that views actions as strategic complements, then

it may be better to incentivize the favorite. In other words, the mixture model invites

a reexamination of what it means and entails to be the favorite or the underdog.

In a similar vein, having identi�ed a second dimension of heterogeneity raises

general questions about how best to �t certain policy interventions and design choices

into a contest model. For instance, is improving the quality of secondary schooling

in an impoverished area simply equivalent to lowering the e¤ected student�s cost of

e¤ort, or is it better described as a more nuanced alteration of the very technology

that he has access to when he prepares for the SAT? Similarly, when a salesman in

a promotion contest is assigned a particularly loyal set of customers, it is reasonable

to expect that it reduces the variance of his performance, but this is more subtle

than a mere change in the cost function. While these questions are not central to the

paper, an example shows that under some, possibly rare, circumstances, improving

the technology of an agent may lower his chances of winning the contest in equilibrium.

To better understand and motivate the kind of heterogeneity studied here, it is

useful to begin by reexamining a common justi�cation of the popular contest success

function introduced by Tullock (1975, 1980). Hirschleifer and Riley (1992), Fullerton

and McAfee (1999), and Jia (2008) show that it can be microfounded as a contest

with stochastic performance. However, these microfoundations assume that the per-

formance of all agents are described by the same parameterized distribution function.

Di¤erences in how actions in�uence the parameter are permitted, through di¤erences

in the so-called impact function. This is a rather restrictive and one-dimensional form

of technological heterogeneity. For instance, if two agents have the same expected

performance, then their distributions must be exactly identical. Thus, heterogeneity

in ability is narrowly de�ned as simply measuring how easy or costly it is to change

a parameter in a distribution function that is common to all.

Consider a promotion contest in which the engineer with the best idea of how

to improve a product is promoted. One engineer is unimaginative but consistent

and well trained, while the other is less conventional and thinks outside the box.

Even if their ideas are equally good in expectation, the performance of the second

engineer is likely to be more erratic. Stated di¤erently, their performance is not

identically distributed. The mixture model incorporates a more �exible expression of

asymmetric skills of this form, by allowing di¤erent agents to have access to di¤erent

parameterized distribution functions. In view of current terminology, the term ability
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will be used to refer to how easy or costly it is to manipulate the parameter. The term

technological heterogeneity is used when distribution functions do not coincide even if

the parameters are the same. Two agents with the same preferences and abilities who

take the same action and win with the same probability will have the same expected

utility. However, if their technologies are heterogeneous, then they are unlikely to

win with the same probability in the �rst place.

As in other contest models, the mixture model allows agents to have heterogeneous

valuations, impact functions, and cost functions.1 The distribution of performance is

a mixture distribution with two components and endogenous weights that are deter-

mined by the agent�s action and impact function. The higher his action, the more

likely it is that his performance is drawn from a good rather than a bad distribu-

tion. The mixture components may be asymmetric across agents. The agents have

heterogeneous technologies when this is so.

One way to think about the model is that the bad mixture component represents

the agent�s innate level of competency or aptitude (from minimal e¤ort) and the good

mixture component his competency or learned and acquired skill if he realizes his full

potential (maximum e¤ort). The impact function measures how far the agent has

come in his journey from innate ability to full potential, or from �oor to ceiling. Then,

the distribution of performance is a convex combination of the two extremes, with

the weights determined by how far the agent has decided to journey. The expected

performance of two agents at the same step in their journey can be di¤erent because

their innate ability and full potential may di¤er. As in the engineering example, it

is also possible that their expected performance is the same, but that the variance

di¤er or indeed that it changes with the action in di¤erent ways. It turns out that

technological heterogeneity has implications that cannot be duplicated simply by

allowing impact functions or preferences and abilities to be heterogeneous.2

The reason why heterogeneous technologies have di¤erent consequences than het-

erogeneous preferences and abilities is that they in�uence the reaction functions in

di¤erent ways. To begin, in two-player Tullock contest with complete information, the

1A companion paper, Kirkegaard (2022), presents a more general version of the model that
permits incomplete information about these characteristics. However, that paper utilizes the mixture
model to consider larger contests and focuses primarily on the case of homogenous technologies.

2See Section 6 for a discussion of a few limited ways in which technological heterogeneity can
be incorporated into Tullock contests and rank-order tournaments. The Tullock contest imposes so
much structure that the technological heterogeneity that it allows can be duplicated by changing
the impact function. The rank-order tournament is more �exible.
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reaction functions are hump-shaped. Starting from a symmetric setting, an agent�s re-

action function shifts outwards when his preferences and impacts become �stronger�.

The equilibrium action pro�le is thus at a place where the stronger agent, who is

now the favorite, has an upwards sloping reaction function and the weaker agent a

downwards sloping reaction function. In words, the favorite (underdog) views actions

as strategic complements (substitutes) in equilibrium.

In a two-player mixture contest, changes in preferences or impacts also shift the

reaction function. However, the �shape�of the reaction function is determined solely

by the relationships between the mixture components. The two reaction functions

are monotonic and they slope in opposite directions. Thus, one agent views actions

as strategic complements and the other sees them as strategic substitutes in a global

sense. Which agent is which does not depend on preferences or impacts, and it is

entirely possible that it is the underdog who views actions as strategic complements.

Consequently, the comparative statics may di¤er from other contest models. Likewise,

extensions to contests with sequential moves may lead to di¤erent conclusions. Hence,

a central question of this paper is what makes an agent view actions as complements

or substitutes in two-player contests, and how this relates to his equilibrium status as

favorite or underdog. It is shown that both the �strength�and the �spread�of the

mixture components matter.

Aside from the role of the technologies in determining who views actions as strate-

gic complements, there are two entangled e¤ects when it comes to deciding who is

the favorite. First, even if the impacts are held �xed across agents, heterogeneous

technologies tend to imply that one agent is more likely to win than another. Second,

incentives are not the same across agents. The reason is that the return to a marginal

increase in an agent�s action is measured by the increase in the winning probability

that is entails, yet this is likely to di¤er from agent to agent when technologies are

heterogenous. Thus, it is possible that the favorite has worse incentives and works

less hard, but wins more often due to a technological advantage.3

To illustrate all these e¤ects, return to the engineering example and imagine that

all mixture components are normal distributions. Further, the two bad components

have the same (low) mean and the two good components have the same (high) mean.

3In the Tullock contest, it is also possible that the agent with the lower action is the favorite,
provided that his impact function is more advantageous. This e¤ect is present also in the mixture
model, but technological heterogeneity adds an extra e¤ect.
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When switching from the bad to the good component, the variance declines for the

unimaginative engineer but increases for the unconventional engineer. Then, the

latter views actions as complements. He is more tempted to bet on outliers when his

competitor works harder, but this requires working harder himself. However, this does

not on its own imply that he works harder than his competitor in equilibrium. For

instance, it is intuitive that equilibrium actions are low if valuations are low. Then,

viewing actions as complements, the unconventional engineer is further dissuaded

from working hard by the fact that his competitor is not working hard. At higher

valuations, this may be reversed and the unconventional engineer may work harder

than the unimaginative engineer. However, even in this case the chance of bad outliers

means that he may nevertheless end up as the underdog.

In summary, comparative statics and policy recommendations in contests generally

rely on identifying which agent views actions as strategic complements. The mixture

model is su¢ ciently tractable that it allows a thorough examination of the role of

technological heterogeneity in determining who this agent is.

2 The model

This paper pursues a version of the mixture model with two-players, complete in-

formation, and concave payo¤ functions. A companion paper, Kirkegaard (2022),

presents a more general version that allows for several players, incomplete informa-

tion about preferences and abilities, and non-concave payo¤s. Incomplete information

is easily handled in the mixture model, but is assumed away in the present paper to

simplify notation and focus on heterogeneous technologies.

There is a single prize. Each agent is characterized in part by his preferences and

abilities, and in part by his technology. Starting with the �rst and more familiar part,

agent i has non-negative valuation vi and an action set Ai that is a non-empty and

compact interval. The agent�s impact function is pi(ai) 2 [0; 1] and his cost function
is ci(ai), ai 2 Ai. Assume that p0i(ai); c0i(ai) > 0 and that p00i (ai) � 0 and c00i (ai) � 0,
with at least one strict inequality. The agent�s payo¤ is vi � ci(ai) if he wins with
action ai, and �ci(ai) if he loses. Participation in the contest is mandatory. The
winner of the contest is the agent with the best performance.

Agent i�s performance is a random variable, Xi, which is unidimensional and with

a distribution that is determined in part by the agent�s action and impact function.
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Upon taking action ai, agent i�s performance follows the mixture distribution

Fi(xijai) = pi(ai)Hi(xi) + (1� pi(ai))Gi(xi): (1)

The mixture components Hi and Gi are themselves distribution functions. They

are assumed to be atomless and have densities hi and gi, respectively. All mixture

components are independent of each other and of actions. They also have the same

support, which in turn implies that the performance of the two agents have the same

support for all possible action pro�les. Hence, for any action pro�le, any agent always

has a chance of winning the contest. Ties can be ignored because the distributions

are atomless. Finally, assume that Hi < Gi on the interior of the support. In

other words, Hi �rst order stochastically dominates Gi, which therefore implies that

Fi(xijai) improves in a �rst-order stochastic sense when the agent works harder. Let
�Hi and �Gi denote the expected values of Hi and Gi respectively, with �Hi > �Gi.

There are two sources of heterogeneity in the model. Inspired by the existing

literature, the agents will be said to have homogeneous preferences and abilities if

they have the same actions sets, valuations, cost functions, and impact functions.

Otherwise, their preferences and abilities are heterogenous. The two agents will be

said to have homogenous technologies if they have symmetric mixture components,

or Hi = Hj and Gi = Gj. Otherwise, their technologies are heterogeneous.

Given the action pro�le, agent i�s probability of winning the contest is

qi(ai; aj) =

Z
Fj(xjaj)fi(xjai)dx

=

Z
(pj(aj)Hj(x) + (1� pj(aj))Gj(x)) (pi(ai)hi(x) + (1� pi(ai) gi(x)) dx;

where it is understood that j 6= i. Note that qi(ai; aj) is a contest success function
(CSF), in the sense that it takes the action pro�le as an input and outputs a winning

probability. Given the action pro�le, agent i�s expected utility is

ui (ai; aj) = viqi (ai; aj)� ci(ai):

The assumptions imposed so far implies that Fi(xijai) is convex in ai. Invoking

a standard result from the moral hazard literature that �ows from Rogerson (1985),

the expectation of any function that is increasing in x �such as Fj(xjaj) �is therefore

6



concave in ai. In other words, qi(ai; aj) is concave in ai, and strictly so if p00i (ai) < 0.

Formally, this can be con�rmed through integration by parts. Hence, ui (ai; aj) is

strictly concave in the agent�s action when vi > 0. The best response to aj is therefore

unique and any equilibrium is in pure strategies.

Since Ai is compact, a best response always exists. The best response is increasing

in aj if qi(ai; aj) is supermodular, or
@2qi(ai;aj)

@ai@aj
> 0, and decreasing in aj if qi(ai; aj) is

submodular, or @
2qi(ai;aj)

@ai@aj
< 0. In the �rst case, agent i considers actions to be strategic

complements and in the second case he views actions as strategic substitutes. Indeed,

the sign of

@2qi (ai; aj)

@ai@aj
= p01(a1)p

0
2(a2)

Z
(Hj(x)�Gj(x)) (hi(x)� gi(x)) dx; (2)

is independent of the action pro�le. This implies that agent i�s best response function

is monotonic, i.e. it is either globally increasing, globally decreasing, or horizontal.

Hence, it does not take the hump-shape that is familiar from the Tullock contest.

Note also that the sign of (2) is the same for all increasing impact functions. In other

words, whether the agent considers actions to be complements or substitutes depends

only on the mixture components and their interaction.

Moreover, since winning probabilities sum to one for all action pro�les, it holds

that
P2

i=1
@2qi(ai;aj)

@ai@aj
= 0. Hence, either (2) takes the opposite sign for the two agents,

or it is zero for both agents. In the former case, one agent views actions as strategic

complements and the other sees them as strategic substitutes. In the latter case, there

is no strategic interaction and equilibrium is therefore in strictly dominant strategies.

As a special case, assume that technologies are homogenous. Then, (2) coincide

for the two agents and it must therefore be zero. Hence, equilibrium is in strictly

dominant strategies. Examples will later demonstrate that there are knife-edge cases

where this may also hold when technologies are heterogenous. When equilibrium is

not in dominant strategies, one best response function slopes upwards and the other

slopes downwards. Hence, they cross exactly once. Thus, equilibrium is unique.

Proposition 1 summarizes the discussion so far.

Proposition 1 There is a unique Nash equilibrium of any two-player mixture contest.
If technologies are homogenous, then the equilibrium is in strictly dominant strategies.

If equilibrium is not in strictly dominant strategies, then one agent views actions as

strategic complements and the other sees them as strategic substitutes.
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To derive equilibrium, and following Kirkegaard (2022), it is useful to expand

qi(ai; aj), yielding

qi(ai; aj) = ti (pj(aj)) + pi(ai)ki (pj(aj))

where

ti (pj) =

Z
(pjHj(x) + (1� pj)Gj(x))� gi(x)dx

is the base probability that agent i wins the contest with a draw from Gi and

ki (pj) =

Z
(pjHj(x) + (1� pj)Gj(x)) (hi(x)� gi(x)) dx

is a measure of the return to agent i�s action since it measures the increase in winning

probability when agent i�s performance is drawn from the good component rather than

the bad components. Since Hi �rst-order stochastically dominates Gi, ki (pj) > 0.

The reason that ti and ki are expressed in terms of pj rather than aj directly is that

pj 2 [0; 1] for any mixture model, which makes it easier to bound and describe these
functions without invoking details about preferences and abilities. This turns out to

be of expositional convenience later on when comparative statics are examined.

The expansion of qi(ai; aj) is helpful because the �rst term in the expansion is

independent of agent i�s action. Hence, given aj, agent i�s problem is to maximize

Ui (ai; aj) = vipi(ai)ki (pj(aj))� ci(ai)

with respect to ai. Rewriting,

ki(pj) =

Z
Gj(x) (hi(x)� gi(x)) dx+ pj

Z
(Hj(x)�Gj(x)) (hi(x)� gi(x)) dx;

or, with the appropriate de�nitions of the coe¢ cients,

k1(p2) = �0 + �1p2

k2(p1) = � 0 + � 1p1:

Note that p01(a1)p
0
2(a2) (k

0
1(p2) + k

0
2(p1)) =

P2
i=1

@2qi(ai;aj)

@ai@aj
= 0, or k01(p2) + k

0
2(p1) = 0.

Example 1: Assume that pi(ai) =
p
ai, ci(ai) = ai; Ai = [0; 1], i = 1; 2. Assume

that viki(0) � 2 � 0 and viki(1) � 2 � 0 for i = 1; 2. This means that valuations

are not too high and ensures that best responses are interior whenever vi > 0. From
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the �rst-order condition, agent i�s best response to aj is ai =
�
1
2
viki(pj(aj))

�2
. This

implies that pi(ai) = 1
2
viki(pj(aj)). Thus, in equilibrium, (a2; a2) solves the system

p1(a1) =
1

2
v1 (�0 + �1p2(a2))

p2(a2) =
1

2
v2 (� 0 + � 1p1(a1))

which is a linear system in p1 and p2. With this transformation, the solution is

(p�1; p
�
2) =

�
2�0v1 + �1� 0v1v2
4� �1� 1v1v2

;
2� 0v2 + �0� 1v1v2
4� �1� 1v1v2

�
and the equilibrium action pro�le is therefore (a�1; a

�
2) = ((p

�
1)
2 ; (p�2)

2). N

A key property of the two-player mixture model is that it is solely the technologies

that determine which agent views actions as strategic complements and which agent

sees them as strategic substitutes. It has nothing to do with valuations, impact

functions, or cost functions, i.e. the factors that are traditionally considered in the

contest literature. Nor does the action pro�le matter. In comparison, in two-player

Tullock contests the �favorite�(the agent who is more likely to win in equilibrium) has

an upward sloping best response function and the �underdog�a downwards sloping

best response function in a neighborhood around the equilibrium action pro�le.

The next two sections studies comparative statics. There are now two dimensions

to study. As always, the consequences of changes in preferences and impacts can

be analyzed. However, the mixture model also invites an examination of the conse-

quences of changes in the performance technologies themselves. Comparative statics

in this vein are considered �rst, since this is new. An important �nding is that it is

not necessarily the favorite who views actions as strategic complements.

3 Comparative statics: Technologies

This section studies the role of the technologies in determining who views actions as

strategic complements, who faces the stronger incentives, and who is the favorite.

The properties of k1 and k2 are key to these questions, yet k1 and k2 depend

in a potentially complicated way on the interaction of the four mixture components

(henceforth referred to simply as components). Thus, the analysis proceeds by study-
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ing two environments that are more specialized. These capture two distinct ways in

which the components can di¤er. The �rst focuses on how �strong�any given compo-

nent is, while the second concentrates on how �spread out�it is. To illustrate, assume

the component�s distribution belongs to some location-scale family of distributions.

Shifting the location then translates into changing the strength of the component,

while manipulating the scale translates into changing the spread of the component.

As alluded to in the introduction, the variance of agent i�s performance depends

on his action. Let �2Hi and �
2
Gi
denote the variance of Hi and Gi, respectively. Then,

the variance of the agent�s ex ante performance, given ai, can be shown to equal

Var [Xijai] = pi(ai)�2Hi + (1� pi(ai))�
2
Gi
+ (1� pi(ai))pi(ai)(�Hi � �Gi)

2: (3)

Thus, the variance changes with the agent�s e¤ort. If �2Hi = �
2
Gi
, then the variance is

maximized when pi(ai) = 1
2
. Otherwise, the variance may be monotonic in ai. When

technologies are heterogenous, the way in which Var[Xijai] evolves with ai is typically
di¤erent from agent to agent as well, even if impact functions are the same.

3.1 On the strength of the mixture components

Assume that all components belong to the same parameterized family of distributions,

FC(xj�), where the exogenous parameter � measures the strength of the component.
Assume that FC(xj�) and its density fC(xj�) are di¤erentiable in �. Assume that
FC� (xj�) < 0 for all interior x, where the subscript refers to the partial derivative.

This means that low outcomes are less likely the higher � is, thus explaining why �

is a measure of strength. More concretely, the components are described by

Hi(x) = F
C(xj�i), Gi(x) = FC(xj�i), i = 1; 2;

where �i and �i are exogenously given and satisfy �i > �i to ensure that Hi �rst

order stochastically dominates Gi. The di¤erence between �i and �i measures how

much better agent i�s good component is compared to his bad component. Comparing

components across agents, agent 1 is said to have a stronger technology than agent 2

if �1 � �2, �1 � �2, and at least one of the inequalities is strict. In this case, agent
1�s good and bad components �rst order stochastically dominates agent 2�s good and

bad components, respectively. Thus, agent 1�s expected performance is higher than
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agent 2�s, for comparable impacts. Agent 1 is said to have a more sensitive technology

than agent 2 if �1 � �2 > �2 � �1 and either �1 > �2 or �2 > �1, or both. Here,

agent 1�s expected performance changes more rapidly with a change in the impact.

For a speci�c example, assume that FC(xj�) = F0(x)�, where F0 is some �parent�
distribution and � is restricted to be strictly positive. Technologies of this form will be

referred to as power technologies since each component raises the parent distribution

to some power. Such technologies are particularly easy to work with because it turns

out that the parent distribution does not in�uence ti(pj) or ki(pj) at all. What matters

is solely how the strengths of the components relate to each other. Thus, it is possible

to obtain more complete results for power technologies.4

The family FC is henceforth assumed to have satisfy an additional regularity

property. Speci�cally, �FC� is log-supermodular in x and �. This assumption is

introduced, and discussed in great detail, by Chade and Swinkels (2020). Although

they use it in a di¤erent context and for very di¤erent purposes, it is also useful

here because it is ideally suited for comparing di¤erent parameter values. Chade and

Swinkels (2020) show that the assumption is equivalent to

@

@x

FC(xj�1)� FC(xj�1)
FC(xj�2)� FC(xj�2)

� 0 when �1 � �2 and �1 � �2, (4)

keeping in mind that it has already been assumed that �1 > �1 and �2 > �2. The

assumption is satis�ed for power technologies. Extending a point made in Chade

and Swinkels (2020), the assumption also hold if FC is the location-scale family, or

FC(xj�) = F0(
x��
�
), whenever the parent distribution F0 has a log-concave density.

To simplify the exposition of results, the assumption will be strengthened slightly to

assume that �FC� is strictly log-supermodular in x and � and that the ratio in (4) is
strictly increasing in the interior of the support when �1 � �2, �1 � �2, and at least
one of the inequalities is strict, i.e. when agent 1 has the stronger technology.

In the present context, FC(xj�1) � FC(xj�1) in (4) can be interpreted as the
reduction in the probability of a performance worse than x if the draw is made

from agent 1�s good component rather than his bad component, or equivalently the

improvement in the probability that the performance is better than x. Note that this

4It can be veri�ed that if Hi(x) = 1� (1� F0(x))1=�i , Gi(x) = 1� (1� F0(x))1=�i , �i > �i > 0,
i = 1; 2, then ti(pj) and ki(pj) are exactly the same as for power technologies. This isomorphism
holds only in two-player contests, however. As an example, if F0 is an exponential distribution with
mean one, then Hi and Gi are exponential distributions with means of �i and �i, respectively.
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is a measure of the return to extra e¤ort, as extra e¤ort makes a draw from the good

component more likely. The condition thus means that if both agents work harder,

agent 1�s return is relatively speaking better compared to agent 2�s return the higher

the performance is. A better performance is more relevant because it is more likely to

be a winning performance. Therefore, it is in agent 1�s interest to work harder when

agent 2 does so. In other words, agent 1 views actions as strategic complements when

he has the stronger technology.

Proposition 2 Agent 1 views actions as strategic complements if he has the stronger
technology. For power technologies, agent 1 views actions as strategic complements if

and only if �1�1 > �2�2.

Figure 1 illustrates Proposition 3 when �2 = 2 and �2 = 1 are �xed but �1 and �1
vary. Since �1 > �1, only the area above the 45

� line is relevant. Agent 1 views actions

as strategic complements to the north-east of (�2; �2) and as strategic substitutes to

the south-west of this point. It is natural to conjecture that the closer (�1; �1) is to the

former region, the more likely it is that agent 1 views actions as strategic complements.

The proposition con�rms this for the case of power technologies, since the higher �1
or �1 is, he more likely it is that the condition that �1�1 > �2�2 is satis�ed. In Figure

1, the downwards sloping line is the level curve where �1�1 = �2�2. Thus, this curve

delineates exactly when agent 1 views actions as complements or substitutes in the

case of power technologies. If �1�1 = �2�2, then there is no strategic interaction and

equilibrium is in strictly dominant strategies. This clearly applies if technologies are

homogenous across agents, but it may also hold when technologies are heterogeneous.

Whether agent i considers actions to be strategic complements or substitutes

depends on the sign of k0i(pj). However, it is level of ki(pj), not its slope, that

determines how strong agent i�s incentives are. Thus, it is not necessarily the case that

the agent who views actions as strategic complements has the strongest incentives.

Indeed, due to the di¤erences between k1(p2) and k2(p1), the two agents face di¤erent

incentives even if they have homogeneous preferences and abilities. For instance,

as �i approaches �i, agent i�s bad component becomes indistinguishable from the

good component. Thus, there is little reason to take costly action to make the good

component more likely. In other words, the agent�s incentives disappear, even if his

technology is more likely to be the strongest. In fact, the argument suggest that

when one agent has a more sensitive technology than the other, then the former has
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Figure 1: For power technologies, agent 1 views actions as strategic complement
(substitutes) above (below) the downwards sloping curve. He has globally stronger
(weaker) incentives to the left (right) of the two solid upwards sloping curves.

stronger incentives. The next result formalizes this intuition.

To robustly compare incentives, it is natural to ask under which conditions it

holds that

min
p22[0;1]

k1(p2) � max
p12[0;1]

k2(p1): (5)

If the agents have homogeneous preferences and abilities �regardless of what those

preferences and abilities are �then (5) implies that agent 1�s incentive to prove e¤ort

is no lower than those of agent 2. Thus, in the following, agent 1 is said to have

globally stronger incentives than agent 2 if (5) applies.

Proposition 3 Agent 1 has globally stronger incentives if he has the more sensitive
technology. For power technologies, agent 1 has globally stronger incentives if

�1 � �2 �
�1�2 + �1�2
2�1�2

(�1 � �2) and �1 � �2 �
2�1�2

�1�2 + �1�2
(�1 � �2) .

Holding �xed �2 and �2, these conditions are more likely to hold the larger �1 is and

the smaller �1 is.

Returning to Figure 1, agent 1 has the globally stronger incentives to the north-

west of (�2; �2) and the weaker incentives to the south-east. Thus, it is natural

13



to conjecture that the closer (�1; �1) is to the former region, the more likely it is

that agent 1 has the stronger incentives. This is con�rmed in the case of power

technologies, where the two conditions in the proposition are more likely to hold the

larger �1 is and the smaller �1 is. In Figure 1, each of the two upwards sloping lines

describe the set of points where one of the conditions holds with equality. Agent 1 thus

has stronger incentives at any point that is to the left of both curves. By combining

Propositions 2 and 3, it is evident that in the region where agent 1 views actions as

strategic complements, he may or may not have the globally stronger incentives.

If the two agents have homogeneous preferences and abilities, then agent i takes the

higher action if he has the globally stronger incentives. However, since technologies

are heterogenous, this does not necessarily mean that agent i wins with a higher

probability. Moreover, even for power technologies, Proposition 3 is silent about the

small area between the two solid curves in Figure 1. Here, neither agent has globally

stronger incentives, and which agent works harder in equilibrium therefore depends

on the speci�cs of the preferences and abilities. Example 2 builds on Example 1 to

show that the favorite may or may not view actions as strategic complements.

Example 2: Begin with the setting in Example 1, but assume v1 = v2 = 2. Hence,

agents have homogenous preferences and abilities. However, agents have heteroge-

neous power technologies, and �2 = 2 and �2 = 1. It is then possible to calculate

precisely when a1 = a2 in equilibrium. The curves in Figure 1 are reproduced as

dashed curves in Figure 2. The solid upwards-sloping curve traces out when a1 = a2.5

In comparison, the solid non-monotonic curve (valid only above the 45� line) describes

when q1(a1; a2) = 1
2
in equilibrium, with q1(a1; a2) > 1

2
outside or above the curve.

Note that the agent who wins most often may or may not be the agent who views

actions as strategic complements. Since the curve in question has an upwards-sloping

segment, agent 1 may win less often in equilibrium if �1 and �1 increase at the same

time, even though this implies that his technology becomes stronger.

Consider two agents who are preparing to apply to college. To do so, they are

investing e¤ort into improving their GPA at their respective secondary schools. How-

ever, due to di¤erences in socioeconomic backgrounds, they do not have access to the

5Appendix B gives a fuller account of how best-response functions depend on the parameters,
and what inferences can be made concerning a1 and a2 without imposing assumptions on preferences.
In particular, at any point in the parameter space, it is possible to characterize how k1 and k2 change
with �1 and �1, which in turn makes it possible to sign the change in the equilibrium value of either
a1 or a2. The change in the other action is ambiguous and depends on preferences.
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Figure 2: Equilibrium actions and winning probabilities.

same quality of secondary schooling. A public intervention that improves the quality

of schooling for agent 1 can be modelled as an increase in �1 and/or �1. The model

cautions that there are parameter constellations for which such an improvement dis-

torts incentives in a way that ultimately leads agent 1 to be less likely to win the

contest. Similarly, an a¢ rmative action policy that scales up the performance of agent

1 before comparing him to agent 2 amounts to changing the distribution of his �nal

�score�. Depending on how this is implemented, it may be captured by an increase

in �1 and �1. See Kirkegaard (2021) for an analysis of how to optimally design the

contest rules in complete information contests with stochastic performance. N

In Figure 2, the part of the parameter space in which agent 1 views actions

as strategic complements can be further divided into three smaller regions. First,

(�1; �1) = (1; 3) is in a region where agent 1 has globally stronger incentives and

is the favorite. Second, the point (�1; �1) = (2; 3) is in a region where agent 1

has globally weaker incentives but is nevertheless still the favorite. Here, his bad

component is stronger than that of agent 2, and he can therefore rely on his superior

base performance to maintain his status as the favorite in equilibrium. Third, the

point (�1; �1) = (
17
20
; 5
2
) belongs to a small region in which agent 1 has globally stronger

incentives but is the underdog. In this case, he works harder than agent 2, but not

hard enough to compensate for the fact that his base performance is poor.
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3.2 On the spread of the mixture components

In the contests studied above, a change in the parameter changes the expected value

of the component and therefore of the agent�s performance for any �xed action. In

the following analysis, the expected value of a given component is held �xed and focus

is instead on the consequences of a change in its spread or variability.

Assume that all components have symmetric densities and that their supports are

the entire real line. The good components have the same mean (and median), or

�H1 = �H2 = �H , but not necessarily the same distribution. For instance, H1 and

H2 might belong to the same (symmetric) location-scale family, Hi(x) = H0(
x��H
�Hi

),

but have di¤erent scale or variance. The obvious example is when they are both

normally distributed, with the same mean but di¤erent variance. However, it is not

necessary that H1 and H2 belong to the same family of distributions. Similarly, the

bad components have the same mean, or �G1 = �G2 = �G, with �G < �H .
6

By construction, if the two agents take actions that lead to the same impact, then

their expected performance is the same. However, the spread of their performance,

and how it depends on their action and impact, need not be the same.

The mixture distribution describes a compound lottery in which the agent draws

from one of two components. There are thus four possible combinations across agents,

in the sense that they can both draw from their respective good components, their

respective bad components, or from �opposite�components. It is useful to consider

the probability of winning conditional on each of the four cases. In the �rst two cases,

components are matched across agents, and in the last two cases they are mismatched.

Recall that agent i considers actions to be strategic complements if qi(ai; aj) is

supermodular. An increase in aj increases the chance that both agents draw from

their good components, and an increase in ai only accelerates that increase. Similarly,

an increase in aj decreases the probability of a match of bad components, and an

increase in ai further decreases that probability. Hence, matched components push in

the direction of making qi(ai; aj) supermodular. The mismatched components push

in the other direction, towards submodularity. The question is which e¤ect dominates

for each agent. The discussion of this issue is made easier by letting XHi and XGi

6In this speci�cation it is not necessary that Hi �rst order stochastically dominates Gi, i = 1; 2.
The ranking of the means and the symmetry assumption are su¢ cient to ensure that ki(pj) > 0,
which in turn implies that the agent�s problem is concave. A formal proof of this assertion is
integrated into the proof of the upcoming Proposition 5.
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denote the random variables that have distributions Hi and Gi, respectively.

Consider �rst matched components. Since two matched components each have

symmetric densities and the same mean, the random variable described by their dif-

ference, XH1�XH2 or XG1�XG2, has mean zero and a symmetric density. Therefore,

it is equally likely to be positive or negative. In other words, the two agents are equally

likely to have the best performance, conditional on the components being matched.

It is only if the components are mismatched that the two agents are not equally likely

to win. Thus, any di¤erence in the two agents�strategic considerations are driven

by di¤erences in what happens if the components are mismatched. In particular, the

agent who views actions as strategic complements is whichever agent is less likely to

win �on balance�when the components are mismatched, i.e. when taking the average

over the two cases in which the components are mismatched.

Thus, consider the case of mismatched components, and assume that agent i draws

from Hi and agent j from Gj. Conditional on this mismatch, the random variable

described by the di¤erence between agent i�s performance and agent j�s performance,

XHi�XGj , has mean �H ��G > 0 and a symmetric density. Thus, it is positive with
a probability in excess of 1

2
. In other words, agent i is more likely to win in this case,

but less likely to win when he is the agent who draws from the bad component.

On average, agent 1�s expected winning probability in the two mismatched cases

is 1
2
(Pr(XH1 �XG2 > 0) + Pr(XH2 �XG1 < 0)), or

1

2
(Pr(XH1 �XG2 > 0) + 1� Pr(XH2 �XG1 > 0))

Thus, agent 1 is on balance less likely to win than agent 2 in the mismatched cases

if he is the agent who enjoys less of an advantage in the best-case scenario where his

good component is matched with his rival�s bad component, or

Pr(XH1 �XG2 > 0) < Pr(XH2 �XG1 > 0): (6)

Hence, determining whether agent 1 considers actions to be strategic complements

boils down to checking this last inequality. If the inequality is replaced with equality,

then there is no strategic interaction and equilibrium is in strictly dominant strategies.

To this end, the relative �spread�of the components are of key importance. Since

they have the same median, H1 and H2 cross at �H . Say that Hi single-crosses
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Hj from above if Hi(x) > Hj(x) for all x 2 (�1; �H) and Hi(x) < Hj(x) for all

x 2 (�H ;1), and extend this de�nition to Gi and Gj in the obvious way. Roughly
speaking, Hi is �atter than Hj and in this sense more spread out, whereas Hj is

more concentrated around its mean. Equivalently, the two distributions are ranked

in terms of the peakedness order, which in turn is closely related to the dispersive

order. See Shaked and Shanthikumar (2007, chapter 3) for details. Note that Hi
is a mean-preserving spread over Hj. As an example, if Hi and Hj belong to the

same location-scale family, then the single-crossing condition is satis�ed if the scale

parameter is larger for Hi than for Hj.

Now, adding the assumption that the densities are unimodal, the peakedness order

is preserved under convolution (Shaked and Shanthikumar (2007, Theorem 3.D.4)).

The implications is that if Hi single-crosses Hj from above and Gj single-crosses

Gi from above, then the distribution of XHi �XGj single-crosses the distribution of

XHj �XGi from above (the random variables �XGj and �XGi are ranked the same

as XGj and XGi in terms of the peakedness order). Since these two random variables

have the same positive mean, �H � �G > 0, the former is therefore less likely to be
positive, implying that Pr(XHi �XGj > 0) < Pr(XHj �XGi > 0). Intuitively, when

Hi and Gj are matched, they are both so noisy that the winner is more likely to be

determined by an outlier performance, which works to the advantage of the agent

drawing from the bad component. On the other hand, when Hj and Gi are matched,

the agent with the bad component is much less likely to win since the distributions

are more concentrated around their respective means.

Proposition 4 Assume that all components have symmetric densities and that �Hi =
�H and �Gi = �G, i = 1; 2. Then, agent 1 views actions as strategic complements if

and only if (6) holds. A su¢ cient condition for (6) is that all densities are unimodal

and that H1 single-crosses H2 from above and G2 single-crosses G1 from above.

Since H1 is a mean-preserving spread over H2 and G2 a mean-preserving spread

over G1, it follows that �2H1 > �
2
H2
and �2G2 > �

2
G1
. Then, Var[X1ja1] increases faster

(or decreases more slowly) with a1 than Var[X2ja2] does with a2 if the impact functions
are the same. Indeed, if �2H1 > �

2
G2
> �2G1 > �

2
H2
then it is possible that Var[X1ja1]

is globally increasing in a1 and Var[X2ja2] is globally decreasing in a2. In this case,
agent 1 becomes more error prone, and agent 2 less so, when e¤ort increases. The

following corollary illustrates Proposition 4 for two special cases that have already
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been alluded to.

Corollary 1 If all components are normally distributed, XHi � N (�H ; �2Hi) and
XGi � N (�G; �2Gi) for i = 1; 2, then (6) holds if and only if �

2
H1
+�2G2 > �

2
H2
+�2G1.

7 If

the good and bad components belong to the same respective location-scale families, or

Hi(x) = H0(
x��H
�Hi

) and Gi(x) = G0(
x��G
�Gi

) for i = 1; 2, with symmetric and unimodal

densities, then a su¢ cient condition for (6) is that �H1 > �H2 > 0 and �G2 > �G1 > 0.

Neither agent has globally stronger incentives. Thus, the identity of the agent

who works hardest depends on preferences and abilities. One way to see this is that

ki(0) = Pr(XHi �XGj > 0)� Pr(XGi �XGj > 0)

= Pr(XHi �XGj > 0)�
1

2
=
1

2
� Pr(XGj �XHi > 0) = kj(1):

Hence, k1(0) = k2(1) and k1(1) = k2(0). Since both functions are linear, it follows

that k1(p) = k2(1� p) and indeed k1(12) = k2(
1
2
).

Taking this a step further, it is always possible to construct homogeneous prefer-

ences and abilities such that p1(a1) = p2(a2) = 1
2
in equilibrium.8 Then, each of the

four possible matches of components are equally likely. The two players are equally

likely to win whenever the components are matched, but if agent 1 views actions

as complements then he is on balance less likely to win if the components are mis-

matched. Hence, agent 1 is the underdog, even though he is the agent who views

actions as complements. The argument extends when preferences and abilities are

�weaker�such that best responses are lowered and p1(a1) < 1
2
in equilibrium. In such

cases, p2(a2) > p1(a1) because k2(p1) is higher than k1(p2) when impacts are small.

Thus, agent 2 works harder than agent 1, which adds to his advantage.

Proposition 5 Consider a two-player contest in which all components have symmet-
ric densities, with �Hi = �H and �Gi = �G, i = 1; 2. Then, k1(p) = k2(1 � p) and
k1(

1
2
) = k2(

1
2
). Hence, neither agent has globally stronger incentives than the other

when equilibrium is not in strictly dominant strategies. If preferences and abilities

are homogeneous, then the agent who views actions as strategic complements is the

underdog whenever his impact is no larger than 1
2
in equilibrium.

7An implication is that equilibrium is in strictly dominant strategies if all components are nor-
mally distributed and �2H1

+ �2G2
= �2H2

+ �2G1
.

8By Proposition 6, k2(0) = k1(1), or �0 = �0 + �1, and as already mentioned �1 = ��1. Using
these in Example 1 proves that p1(a1) = p2(a2) = 1

2 if vi =
2

2�0+�1
, i = 1; 2, in that set-up.
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Appendix B considers a complementary speci�cation of the components. At least

one components has a monotonic density, which rules out symmetric densities. In

exchange, it is possible to replace the single-crossing condition with a mean-preserving

spread. The intuition for who views actions as strategic complements remains the

same, but now there are cases in which one agent has globally stronger incentives.

4 Comparative statics: Preferences and abilities

This section begins by assuming that one agent becomes stronger in the traditional

sense that his valuation increases. The formal analysis of the resulting comparative

statics is entirely routine, since it is merely a matter of recording the consequences of

shifting one of two monotonic best-response functions. Thus, the main point of this

section is conceptual, speci�cally to reinforce the point that in the mixture model it

is the agent�s view of actions as strategic complements or substitutes that matter,

rather than his status as favorite or underdog per se.

Imagine that v2 increases. Since agent 2 now values the prize more highly, it is

hardly surprising he works harder in equilibrium. The change in agent 1�s equilibrium

action is in turn determined by whether he views actions as complements or substi-

tutes. In the former case, the increase in agent 2�s action eggs agent 1 on, whereas it

discourages him in the latter case.

Proposition 6 Consider a two-player mixture contest in which v2 increases. Then,
a2 weakly increases in equilibrium. On the other hand, a1 weakly increases in equilib-

rium if �1 > 0 and weakly decreases in equilibrium if �1 < 0.

Consider a contest designer who wishes to spur both agents to work harder. For

instance, the action represents human capital accumulation, and the designer desires

that everyone �levels up.� In the mixture model, this can be achieved by given the

agent who views actions as substitutes a bonus if he wins, such that his valuation of

the prize increases. This makes him work harder, which in turn makes his competitor

�who sees actions as complements �work harder as well. However, the wrinkle is

that it may be the favorite who views actions as substitutes and the designer then

ends up encouraging the agent who is already more likely to win. A similar kind of

logic reappears in the next section, which considers extensions to sequential contests.
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Incidentally, the conclusion in Proposition 6 extends to the case where agent 2�s

marginal costs decrease for all actions. However, a change in agent 2�s impact function

is more subtle, because this directly impacts agent 1�s best response function as well.

5 Sequential contests and precommitment

Dixit (1987) considers a sequential contest with an exogenous order of moves, much as

in a Stackelberg game. Information is complete and agents have the same valuations

and cost functions. However, their impact functions may be di¤erent. Dixit asks

whether the agent that moves �rst over- or undercommits e¤ort relative to equilibrium

e¤ort in a simultaneous move game.

In contests with two agents, the basic strategic considerations are intuitively clear.

Any agent is more likely to win the lower the competitor�s e¤ort is. In Dixit�s words,

this �makes it strategically desirable for [the leader] to precommit his e¤ort level in

such a way as to induce a lower e¤ort from the [follower] in response. Whether this

means a commitment at a higher or a lower level of one�s own e¤ort depends on

whether the other�s best response function has a negative or positive slope.�

In the contest games that Dixit studies �which includes Tullock contests �the

favorite views actions as strategic complements locally whereas the follower views

them as strategic substitutes. Thus, if the favorite (underdog) moves �rst, then an

increase (decrease) in his own action leads his competitor to respond in the desired

way. However, in the mixture model, the favorite, i.e. the agent who is most likely to

win the simultaneous move contest, may be the agent who views actions as strategic

substitutes. In this sense, Dixit�s result can be reversed in the mixture model.

Baik and Shogren (1992) extend Dixit�s model by endogenizing the order of moves.

In equilibrium, the underdog moves �rst and the favorite second. The logic of their

argument extends to the mixture model, in the sense that it is the agent who views

actions as substitutes that moves �rst. However, in the mixture model, this means

that it may be the favorite that moves �rst. In equilibrium, both agents expend less

e¤ort than in the equilibrium of the simultaneous move game. Baik and Shogren

(1992) observe that the social costs of e¤ort is therefore lower than what is predicted

by the simultaneous game.
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6 Discussion

6.1 Incomplete information

It is easy to add independent private information about preferences and abilities to

the model, but it does not add anything to this paper�s research question. Since

Fj(xjjaj) is separable, the only part of agent j�s strategy that agent i cares about
is the expected value of player j�s impact (taken over player j�s types). This is

su¢ cient to describe the ex ante expected distribution of agent j�s performance and

inform agent i�s maximization problem. Consequently, all of agent i�s types react in

the same direction to an increase in agent j�s expected impact. In this sense, all of

agent i�s types agree whether actions are strategic complements or substitutes and it

is once again the mixture components that, through �1 and � 1, determine which agent

views actions as complements. A more precise discussion is in Kirkegaard (2022).

Since it is only the technologies that matter, Propositions 2-5 and Corollary 1

are e¤ectively unchanged in the face of incomplete information about preferences and

abilities. In Proposition 5, the last part holds whenever the expected impact of the

agent who view actions as strategic complements is no larger than 1
2
in equilibrium.

6.2 Di¤erence-form contest success functions

Consider the special case in which technologies are homogeneous. Then, ki(pj) = �0
is a constant, i.e. it is independent of pj, and it is the same for i = 1; 2. Indeed, the

contest success function takes a particularly simple form in this case. First

�0 =

Z
G(x)h(x)dx�

Z
G(x)g(x)dx =

Z
G(x)h(x)dx� 1

2
:

This is at most 1
2
since the �rst term on the far right is the expectation of G, which

cannot be greater than one. Hence, �0 2 (0; 12).
Second, integration by parts con�rms that ti(pj) = 1

2
� pj�0. Thus,

qi(ai; aj) =
1

2
+ (pi(ai)� pj(aj))�0: (7)

Since �0 2 (0; 12), this probability is interior, i.e. it is in (0; 1). The agent with the
higher equilibrium impact is more likely to win. This is simply because the distrib-
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ution of his equilibrium performance �rst order stochastically dominates that of his

competitor, given the mixture components are identity-independent by assumption.

The contest success function in (7) is a special version of a di¤erence-form contest.

The important feature is that the agent can neither guarantee that he wins nor that

he loses. In contrast, Che and Gale�s (2000) analysis of piece-wise linear di¤erence-

form contests is made complicated by the fact that winning probabilities of 0 or 1 can

be achieved. This produces an interaction between agents�actions, and equilibrium

is therefore not in dominant strategies.

As e.g. Konrad (2009) and Brown and Minor (2014) point out, in a rank-order

tournament in which the di¤erence between the two agent�s error terms is a random

variable that is uniformly and symmetrically distributed around zero, the contest

success function (CSF) is also of the di¤erence form, much as in (7). Brown and Minor

(2014) utilize this to good e¤ect in an elimination tournament, since equilibrium in

the �nal stage is in dominant strategies.

Thus, the rank-order tournament can be used to microfound this type of di¤erence-

form CSF. However, it requires that the random variable in question is distributed

in a very particular way. The mixture model presented in the current paper provides

an alternative microfoundation. This does not require the mixture components to

be distributed in any speci�c ways, but it does of course require performance to be

determined by a mixture distribution. Moreover, although the two models give rise to

the same CSF in contests with two agents, they diverge in contests with more agents.

By Proposition 2 and Corollary 1, there are contests with heterogeneous tech-

nologies in which equilibrium is in strictly dominant strategies. For instance, this

occurs for power technologies whenever �1�1 = �2�2. In such cases, k1(p2) = �0

and k2(p1) = � 0 are constants. Then, the CSF is again of the di¤erence-form, but

generally speaking not symmetric. For instance, the counterpart to (7) for player 1 is

q1(a1; a2) =

Z
G2(x)g1(x)dx+ p1(a1)�0 � p2(a2)� 0.

Thus, it is also possible to microfound asymmetric di¤erence-form CSFs.

Finally, when equilibrium is not in strictly dominant strategies, the CSF is no

longer a di¤erence-form CSF. The CSF now contains an additional term that depends

on the product of p1(a1) and p2(a2).
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6.3 Technological heterogeneity in other contests

As emphasized repeatedly already, the common assumption in the contest literature

is that heterogeneity re�ects either di¤erences in valuations or in cost or impact

functions. The underlying performance technology is typically held �xed. Indeed, in

order to invoke any of the microfoundations for the Tullock CSF, the noise must be

similarly distributed across agents. For instance, in Fullerton and McAfee�s (1999)

justi�cation, the interpretation of the impact function is that it measures a number of

�ideas�, each of which is i.i.d. across agents. In other words, the quality of a random

idea or trial is distributed the same across agents. Although there are exceptions, the

Tullock CSF does not generally obtain if the distribution of ideas di¤er across agents.

Nevertheless, allowing heterogeneity along this dimension seems economically to be

no less relevant or interesting than heterogeneity along the more familiar dimensions.9

This subsection demonstrates that the microfoundations for the Tullock CSF can

in fact accommodate certain limited kinds of technological heterogeneity. Starting

with Fullerton and McAfee�s (1999) microfoundation, agent i�s performance is char-

acterized by a distribution function of the form

Fi(xijai) = H(xi)pi(ai);

where H is a distribution function that is common to all agents and where pi(ai) � 0
is the agent�s impact function. It is possible to slightly relax the assumption that H

is identity-independent. Speci�cally, assume that Hi(xi) = H0(xi)
�i, where H0 is a

parent distribution common to all agent, and where �i > 0 can vary from agent to

agent. Thus, �i re�ects a kind of technological heterogeneity that is somewhat in the

spirit of Section 3.1 in the sense that it speaks to the �strength�of the agent. Then,

Fi(xijai) = Hi(xi)pi(ai) = H0(xi)�ipi(ai);

and the technological heterogeneity is isomorphic to a rescaling of the impact function

in a setting with a common distribution function. In other words, technological

heterogeneity in this context can essentially be duplicated by changing the impact

9For instance, consider a set of PhD candidates who are about to enter the academic job market.
The job market paper of any given candidate can be thought of as the culmination of the work that
arose from his best idea. While some candidates may have more ideas than others, it also seems
true that some candidates simply have better ideas on average.
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function. It does not add extra dimensions to player heterogeneity, unlike in the

mixture model. Indeed, if �ipi(ai) = �jpj(aj) then the performance of the two agents

are identically distributed. Note that if the Hi�s are di¤erent across each other in

some arbitrary way, then generally speaking the CSF is no longer a Tullock CSF.

Hirschleifer and Riley�s (1992) microfoundation involves multiplicative noise. In

particular, the agent�s performance is his impact multiplied by a noise term that is

exponentially distributed with mean one. As a result, the agent�s performance is

exponentially distributed with mean pi(ai). However, the mean of the multiplicative

noise can be made to vary from agent to agent. If the mean of agent i�s noise term is

�i > 0, then the agent�s performance is exponentially distributed with mean �ipi(ai).

Thus, this kind of technological heterogeneity is exactly the same as in the version

of Fullerton and McAfee�s model just mentioned. Jia�s (2008) microfoundation also

features multiplicative noise and the same observation applies to that model as well,

as can be seen formally from Jia�s (2008) Corollary 1.

Turning next to Lazear and Rosen�s (1981) rank-order tournament, the standard

assumption is that the additive noise is identically distributed across agents. However,

this assumption can be relaxed, allowing the noise to have di¤erent �spread�. See

e.g. Imhof and Kräkel (2016). Technologies are then heterogeneous in the spirit of

Section 3.2. However, contrary to Section 3.2, the variance is independent of the

action in that model. Likewise, it can be shown that if the noise terms have identity-

dependent but symmetric densities, then best-response functions are hump-shaped

and the favorite views actions as strategic complements. This need not be the case if

the densities are not symmetric.

7 Conclusion

This paper introduces the mixture model of contests. The mixture model makes

it possible to study heterogenous technologies, i.e. situations in which agents are

so fundamentally di¤erent that they cannot exactly replicate the distribution of the

performance of their competitor.

While heterogenous technologies can be modeled in other ways, the mixture model

provides a particularly stark illustration of the consequences of this kind of heterogene-

ity. In particular, in the two-player version of the model, the technologies completely

�take over�in terms of determining the nature of the strategic considerations. That
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is, it is solely the technologies that decide who views actions as strategic complements

or substitutes. Preferences, costs, or other similar characteristics are irrelevant. Thus,

unlike in other contest models, it may be the underdog who views actions as strategic

complements. When this is so, the comparative statics are evidently di¤erent from

the more traditional contest models. In other words, technological heterogeneity can

overturn some of the conventional wisdom in contest theory.

The mixture model is su¢ ciently tractable that it allows the study of many-

player contests with incomplete information. A companion paper, Kirkegaard (2022)

examines such contests, assuming homogenous technologies. That paper challenges

the robustness of some of the insights derived from the more standard contest models.
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Appendix A: Omitted proofs

Proof of Proposition 1. The main body of the text contains proves the proposi-

tion, using as a critical step the property that
P2

i=1
@2qi(ai;aj)

@ai@aj
= 0. A direct proof of

this property follows from the fact thatP2
i=1

@2qi(ai;aj)

@ai@aj

p01(a1)p
0
2(a2)

=

Z x

x

((H2(x)�G2(x)) (h1(x)� g1(x)) + (H1(x)�G1(x)) (h2(x)� g2(x)))dx

= [(H1(x)�G1(x)) (H2(x)�G2(x))]xx
= 0;

where x and x is the upper and lower end-point of the support, respectively. The

proposition now follows.

Proof of Proposition 2. Since k01(p2) + k
0
2(p1) = 0, it follows that k

0
1(p2) > 0 if

k01(p2)� k02(p1) > 0. Since

k0i(pj) =

Z �
FC(xj�j)� FC(xj�j)

� �
fC(xj�i)� fC(xj�i)

�
dx

it holds that

k0i(pj) =

Z �
FC(xj�j)� FC(xj�j)

� �
FC(xj�i)� FC(xj�i)

�� fC(xj�i)� fC(xj�i)
FC(xj�i)� FC(xj�i)

�
dx

=

Z �
FC(xj�j)� FC(xj�j)

� �
FC(xj�i)� FC(xj�i)

� @ ln �FC(xj�i)� FC(xj�i)�
@x

dx

and therefore

k01(p2)� k02(p1) =
Z ��

FC(xj�1)� FC(xj�1)
� �
FC(xj�2)� FC(xj�2)

��
� @

@x
ln

�
FC(xj�1)� FC(xj�1)
FC(xj�2)� FC(xj�2)

�
dx:

The term in square brackets is strictly positive for all interior x, by �rst order sto-

chastic dominance. Utilizing the strict log-supermodularity of �FC� , the last term in

the integrand is strictly positive when agent 1 has the stronger technology. Then,

k01(p2) > 0 and agent 1 considers actions to be strategic complements.
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For the second part, integration by substitution con�rms that

ti(pj) =
�i

�i + �j
�

�i
�
�j � �j

��
�i + �j

�
(�j + �i)

pj

ki(pj) =
�j (�i � �i)�

�i + �j
� �
�i + �j

� + (�i � �i)
�
�j � �j

� �
�i�i � �j�j

�
(�i + �j)

�
�i + �j

�
(�j + �i)

�
�i + �j

�pj
regardless of what the parent distribution F0 is. Since

k0i(pj) =
(�i � �i)

�
�j � �j

� �
�i�i � �j�j

�
(�i + �j)

�
�i + �j

�
(�j + �i)

�
�i + �j

� ;
the second part of the proposition follows.

Proof of Proposition 3. The objective is to prove that (5) holds. Since one

of k1 and k2 is weakly increasing and the other weakly decreasing in its argument,

it follows that minp2[0;1] k1(p) � maxp2[0;1] k2(p) if k1 exceeds k2 at both corners,

i.e. when p = 0 and when p = 1. Let �(p) = k1(p) � k2(p), and recall that
�0(p) = k01(p) � k02(p) = �1 � � 1 is independent of p. Of course, �(p) and �0(p)

depends on the parameters �1, �1, �2, and �2, but that dependence is suppressed

from the notation. Given

ki(0) =

Z
FC(xj�j)

�
fC(xj�i)� fC(xj�i)

�
dx

ki(1) =

Z
FC(xj�j)

�
fC(xj�i)� fC(xj�i)

�
dx;

it follows that

�(0) =

Z
FC(xj�2)

�
fC(xj�1)� fC(xj�1)

�
dx�

Z
FC(xj�1)

�
fC(xj�2)� fC(xj�2)

�
dx

�(1) =

Z
FC(xj�2)

�
fC(xj�1)� fC(xj�1)

�
dx�

Z
FC(xj�1)

�
fC(xj�2)� fC(xj�2)

�
dx:

Recall that the region of interest is �1 � �2 > �2 � �1. At (�1; �1) = (�2; �2), it

holds by symmetry that �(0) = �(1) = �0(p) = 0. Now increase �1. Since this

leads to a �rst-order stochastic improvement in agent 1�s good mixture component,

this causes �(0) to increase. Thus, �(0) > 0 whenever �1 > �2 > �2 = �1. Still
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assuming �2 = �1, note that �(1) = �(0) + �
0(p), with

@�0(p)

@�1
=

Z �
FC(xj�2)� FC(xj�2)

�
fC� (xj�1)dx�

Z
FC� (xj�1)

�
fC(xj�2)� fC(xj�2)

�
dx

=

Z Z �2

�2

�
FC� (xjz)fC� (xj�1)� FC� (xj�1)fC� (xjz)

�
dzdx

=

Z Z �2

�2

FC� (xjz)FC� (xj�1)
 
fC� (xj�1)
FC� (xj�1)

�
fC� (xjz)
FC� (xjz)

!
dzdx

> 0

for all �1 � �2, due to the strict log-supermodularity of �FC� . Since both �(0) and
�0(p) strictly increases with �1, it holds that �(0) > 0 whenever �1 > �2 > �2 = �1.

Now starting from any point with �1 � �2 > �2 = �1, decrease �1. Here, �(1)

is decreasing in �1, so the decrease in �1 turns out to increase �(1) further. Hence,

�(1) > 0. Next,

@�0(p)

@�1
= �

Z �
FC(xj�2)� FC(xj�2)

�
fC� (xj�1)dx+

Z
FC� (xj�1)

�
fC(xj�2)� fC(xj�2)

�
dx

= �
Z Z �2

�2

�
FC� (xjz)fC� (xj�1)� FC� (xj�1)fC� (xjz)

�
dzdx

= �
Z Z �2

�2

FC� (xjz)FC� (xj�1)
 
fC� (xj�1)
FC� (xj�1)

�
fC� (xjz)
FC� (xjz)

!
dzdx

> 0 for all �1 � �2:

Thus, as �1 decreases, �(1) is positive and increases, while �
0(p) decreases. This

implies that�(0) increases. Since�(0) was positive to start, it follows that�(0) > 0.

In summary, �(0) > 0 and �(1) > 0 when �1 � �2 > �2 � �1 and either �1 > �2 or
�2 > �1, or both. This completes the proof of the �rst part.

For power technologies,

ki(0) =
�j (�i � �i)�

�i + �j
� �
�i + �j

� and ki(1) = �j (�i � �i)
(�i + �j) (�j + �i)

;
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and

�(0) =
2�1�2 (�1 � �2)� (�1�2 + �1�2) (�1 � �2)

(�1 + �2) (�2 + �1) (�1 + �2)

�(1) =
(�1�2 + �1�2) (�1 � �2)� 2�1�2 (�1 � �2)

(�1 + �2) (�2 + �1) (�1 + �2)
:

Hence, if the two conditions in the proposition are satis�ed, then �(0) � 0 and

�(1) � 0. This proves the second statement in the proposition.
For the last statement, assume that the two conditions are satis�ed. The task is

then to verify that they remain satis�ed as (i) �1 increases or (ii) �1 decreases. The

last part is easy, because the right hand side of both inequalities are increasing in �1.

For the �rst part, note that if the �rst inequality in the proposition is satis�ed, then

�2 � �1 �
(�2 � �1) 2�1�2
�1�2 + �1�2

and

@

@�1

�
�1 � �2 �

�1�2 + �1�2
2�1�2

(�1 � �2)
�
=
�2 (�2 � �1) + 2�1�2

2�1�2
� �22 + �1�2
�1�2 + �1�2

> 0;

which proves that the �rst inequality is still satis�ed when �1 increases. The proof

that the second inequality remains satis�ed when �1 increases is similar.

Proof of Proposition 4. The intuition is explained in the main text. A formal

proof follows. Consider

k01(p2) =

Z
(H2(x)h1(x) +G2(x)g1(x)�G2(x)h1(x)�H2(x)g1(x)) dx

= Pr(XH2 < XH1) + Pr(XG2 < XG1)� Pr(XG2 < XH1)� Pr(XH2 < XG1)

= Pr(XH1 �XH2 > 0) + Pr(XG1 �XG2 > 0)� Pr(XH1 �XG2 > 0)� Pr(XH2 �XG1 < 0);

but since the random variables (XH1 �XH2) and (XG1 �XG2) have densities that are

symmetric around zero, it follows that Pr(XH1�XH2 > 0) = Pr(XG1�XG2 > 0) =
1
2
.

Thus,

k01(p2) = 1� Pr(XH1 �XG2 > 0)� Pr(XH2 �XG1 < 0)

= Pr(XH2 �XG1 > 0)� Pr(XH1 �XG2 > 0)
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This proves that k01(p2) > 0 if and only if (6) holds. The second part of the proposition

was proven in the text.

Proof of Corollary 1. Assume that all mixture components are normally dis-

tributed. Then, the random variable XH2 � XG1 has mean �H � �G and variance
�2H2 + �

2
G1
while the random variable XH1 � XG2 has mean �H � �G and variance

�2H1 + �
2
G2
. Thus,

k01(p2) = Pr(XH2 �XG1 > 0)� Pr(XH1 �XG2 > 0)

= Pr(XH1 �XG2 < 0)� Pr(XH2 �XG1 < 0)

= �

�
0� (�H � �G)
�2H1 + �

2
G2

�
� �

�
0� (�H � �G)
�2H2 + �

2
G1

�
= �

�
�G � �H
�2H1 + �

2
G2

�
� �

�
�G � �H
�2H2 + �

2
G1

�
:

Since �G � �H < 0, k01(p2) > 0 if and only if �2H1 + �
2
G2
> �2H2 + �

2
G1
. This proves the

�rst part of the proposition. The second part follows from applying the second part

of Proposition 4.

Proof of Proposition 5. To begin, for agent 1

k1(0) = Pr(XH1 �XG2 > 0)� Pr (XG1 �XG2 > 0) = Pr(XH1 �XG2 > 0)�
1

2

k1(1) = Pr(XH1 �XH2 > 0)� Pr(XH2 �XG1 < 0) =
1

2
� Pr(XH2 �XG1 < 0):

This is an opportune time to prove the claim in the main body of the text that

ki(pj) > 0 even without assuming that Hi �rst order stochastically dominates Gi.

Since XG2�XH1 is symmetric around �G��H < 0, the probability that it is negative
is between 1

2
and 1. It follows that k1(0) 2 (0; 12). A similar argument proves that

k1(1) 2 (0; 12). Since k1(p2) is an increasing or decreasing function, it is always between
k1(0) and k2(1). Hence, k1(p2) 2 (0; 12) for all p2 2 [0; 1]. By symmetry, the same
arguments holds for agent 2 as well.

Indeed, for agent 2,

k2(0) = Pr(XH2 �XG1 > 0)�
1

2
= 1� Pr(XH2 �XG1 < 0)�

1

2
= k1(1)

k2(1) =
1

2
� Pr(XH1 �XG2 < 0) =

1

2
� (1� Pr(XH1 �XG2 > 0)) = k1(0):

33



Thus, k2(0) = k1(1) and k2(1) = k1(0). Moreover, k1(p2) and k2(p1) are linear

functions. Combining these two facts yields

k1(p) = (1� p) k1(0) + pk1(1)
= (1� p) k2(1) + pk2(0)
= k2(1� p):

Thus, there are only two possibilities. The �rst possibility is that k1(p2) and k2(p1)

are constants, in which case equilibrium is in strictly dominant strategies. The only

other possibility is that k1(p) and k2(p) cross each other on p 2 [0; 1], in which case
neither agent has globally stronger incentives. Since k1(p) = k2(1�p), it is immediate
that k1(12) = k2(

1
2
).

Finally, assume without loss of generality that agent 1 views actions as strategic

complements, or k01(p2) > 0. Assume agents have homogenous preferences and abil-

ities. Then, no equilibrium can feature p2 < p1 � 1
2
because this implies k2(p1) >

k1(p2), which in turn means that agent 2�s best response is weakly bigger than agent

1�s best response type-for-type, but this yields the contradiction that p2 � p1. Hence,
if p1 � 1

2
then p2 � p1. Simple algebra con�rms, with some abuse of notation, that

q1(a1; a2)� q2(a2; a1) = p1(1� p2) (2 Pr(XH1 �XG2 > 0)� 1)
�p2 (1� p1) (2 Pr(XH2 �XG1 > 0)� 1)

< (p1 � p2) (2 Pr(XH2 �XG1 > 0)� 1) ;

where the argument ai has been omitted from pi(ai) for notational simplicity. The

inequality follows from 2Pr(XH1 � XG2 > 0) � 1 < 2Pr(XH2 � XG1 > 0) � 1, by
(6). Then, since Pr(XH2 � XG1 > 0) > 1

2
, it follows that q1(a1; a2) � q2(a2; a1) if

p1(a1) � p2(a2). This completes the proof that agent 1 is the underdog if he views

actions as strategic complements and p1(a1) � 1
2
in equilibrium.

Proof of Proposition 6. The increase in agent 2�s valuation shifts his reaction

function up or out but does not change agent 1�s reaction function. This changes the

intersection of the reaction functions. Given that the reaction functions are monotonic

and slope in opposite directions, a2 weakly increases in equilibrium. At the same time,

a1 weakly increases if is is agent 1�s reaction function that has a positive slope (�1 > 0)

and weakly decreases if it is his reaction function that has a negative slope (�1 < 0).
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These are weak rather than strict changes, because it is possible that equilibrium

initially involved an action on the boundary of the action set.
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Appendix B: More properties of the mixture model

B.1 Comparative statics of heterogeneous power technologies

Lemma 1 Consider a two-player contest with heterogenous power technologies. Hold-
ing �xed �2 and �2, k1(p2) is strictly increasing in �1 and strictly decreasing in �1 for

all p2 2 [0; 1].10 On the other hand, for any p1 2 (0; 1), k2(p1) is strictly decreasing
(increasing) in �1 if �21 > �2�2 (�

2
1 < �2�2) and strictly increasing (decreasing) in

�1 if �
2
1 < �2�2 (�

2
1 > �2�2). Thus, if �

2
1 > �2�2 > �

2
1, then a marginal increase in

�1 or a marginal decrease in �1 leads k2(p1) to decrease for all p1 2 (0; 1).

Proof. Since ki(pj) is a convex combination of ki(0) and ki(1), it must increase

(decrease) for all pj if it increases (decreases) at both endpoints ki(0) and ki(1).

Simple di¤erentiation con�rms that k1(0) and k1(1) strictly increases in �1 and strictly

decreases in �1, as desired. Hence, k1(p2) strictly increases for all p2 2 [0; 1] if �1
increases or �1 decreases. For k2(p1), it holds that

@k2(0)

@�1
= 0 and

@k2(1)

@�1
=
(�2�2 � �21) (�2 � �2)
(�1 + �2)

2 (�1 + �2)
2

@k2(0)

@�1
=

�
�2�2 � �21

�
(�2 � �2)

(�2 + �1)
2 (�1 + �2)

2 and
@k2(1)

@�1
= 0.

Thus, k2(p1) is strictly decreasing (increasing) in �1 for all p1 2 (0; 1] if �2�2��21 < 0
(�2�2 � �21 > 0). Similarly, k2(p1) is strictly increasing (decreasing) in �1 for all

p1 2 [0; 1) if �2�2 � �21 > 0 (�2�2 � �21 < 0). This proves the lemma.
The �rst part of the lemma is intuitive. Simply put, the incentive to take a higher

action is greater when the agent�s good component is very good or his bad component

is very bad. On the other hand, on a large portion of the parameter space �or more

precisely when �21 > �2�2 > �
2
1 �k2(p1) is increasing in �1 but decreasing in �2. In

this case, agent 2�s incentives become weaker as agent 1�s mixture components diverge

from each other, or �1 ! 0 and �1 !1. In the limit, agent 1�s mixture components
are degenerate and agent 2 wins if and only if agent 1 draws from his bad component.

Since agent 2 cannot e¤ect the probability of that event, his incentives disappear.

10A stronger statement can be proven. Speci�cally, if H1 (G1) improves in the sense of �rst-order
stochastic dominance, then k1(p2) increases (decreases). This statement does not require power
technologies. However, power technologies enables predictions about how k2(p1) depends on agent
1�s mixture components.
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The case where �21 > �2�2 > �
2
1 is a natural starting point because it is satis�ed

when the two agents have homogeneous power technologies. Thus, it also holds when

technologies are �almost�homogeneous. More generally, the parameter space can be

divided into four regions, depending on (i) whether �1�1 > �2�2 or �1�1 < �2�2 hold

and (ii) whether �21 > �2�2 > �
2
1 does or does not apply. Thus, de�ne the regions

A0 = f(�1; �1; �2; �2) j�1 > �1, �2 > �2, �1�1 > �2�2 and �21 > �2�2 > �21g
A00 = f(�1; �1; �2; �2) j�1 > �1, �2 > �2, �1�1 < �2�2 and �21 > �2�2 > �21g
B = f(�1; �1; �2; �2) j�1 > �1, �2 > �2, and �21 < �2�2g
C = f(�1; �1; �2; �2) j�1 > �1, �2 > �2, and �21 > �2�2g

In Figure 1, regions A0 and A00 are to the north-west of the point on the 45� line

where �1 = �1 =
p
�2�2, i.e. where the 45

� line is intersected by the �1�1 = �2�2
curve. Further, A0 is above the latter curve, A00 below it. The region C is to the

north-east of the point just mentioned, and B to the south-west of it, but in both

cases above the 45� line.

Proposition 7 Consider a two-player contest with heterogenous power technologies.
Holding �xed �2 and �2, the equilibrium values of a1 and a2 changes with �1 and �1
as follows:

1. A marginal increase in �1 causes a1 to increase in region A00, a2 to decrease in

region A0 and C, and a2 to increase in region B.

2. A marginal increase in �1 causes a2 to increase in region A
0, and a1 to decrease

in region A00, B, and C.

Proof. Consider regions A0 and A00. Here, �21 > �2�2 > �
2
1. By the previous lemma,

k1(p2) is strictly increasing in �1 and strictly decreasing in �1 for all p2 2 [0; 1], k2(p1)
is strictly decreasing in �1 and strictly increasing in �1 for all p1 2 (0; 1). If �1
increases, the increase in k1(p2) and decrease in k2(p1) in turn implies that agent 1�s

best response increases and agent 2�s best response decreases. Thus, the �xed point

changes as well. From Proposition 2, if �1�1 > �2�2 then k
0
1(p2) > 0 and therefore

agent 1�s best response is increasing in a2, while k02(p1) < 0 and therefore agent 2�s

best response is decreasing in a1. Given how the reaction functions shift, it follows

that a2 decreases if a decrease is feasible, i.e. if a2 > minA2 (the change in a1 is
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ambiguous). By a similar argument a1 increases if a1 < maxA1 and �1�1 < �2�2

(in this case, the change in a2 is ambiguous). If �1 increases, then the argument is

reversed.

For regions B and C, the previous lemma once again makes it possible to infer

how the best response functions change. The rest of the argument then follow the

same logic as above.

B.2 Monotonic densities and mean-preserving spreads

The next result complements the speci�cation in Section 3.2 by imposing other reg-

ularity conditions on the mixture components. The result assumes, as in the main

model, that Hi �rst order stochastically dominates Gi, i = 1; 2.

Proposition 8 Consider a two-player contest in which H2 � G2 is weakly convex.
Assume that either (i) G1 = G2 = G is weakly convex and H1 is a mean-preserving

spread over H2 or (ii) H1 = H2 = H is weakly concave and G1 is a mean-preserving

contraction over G2. In either case, agent 1 (weakly) views actions as strategic com-

plements. Agent 1 has globally stronger incentives in case (i) but agent 2 has globally

stronger incentives in case (ii).

Proof. Assume that H2 � G2 is weakly convex. As a preliminary result, it will
be shown that if agent 1 views actions as strategic complements and H1 undergoes

a mean-preserving spread or G1 a mean-preserving contraction, then it remains the

case that agent 1 sees actions as strategic complements. First,

k01(p2) =

Z
(H2(x)�G2(x)) (h1(x)� g1(x)) dx

is assumed to be positive before agent 1�s technology changes. If H2 � G2 is weakly
convex and H1 undergoes a mean-preserving spread thenZ

(H2(x)�G2(x))h1(x)dx

weakly increases and it follows that agent 1 still views actions as strategic comple-

ments. Similarly, if G1 undergoes a mean-preserving contraction thenZ
(H2(x)�G2(x)) g1(x)dx
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weakly decreases and the result follows again.

Now apply this preliminary result to case (i) in the proposition. It is assumed

that G1 = G2 = G. If it was the case that H1 = H2, then the two agents would have

homogenous technologies and k01(p2) = 0. However, since H1 is a mean-preserving

spread over H2, the preliminary result implies that k01(p2) � 0. A similar argument
holds for case (ii). This proves the �rst statement in the proposition.

For the second part of the proposition, given that k01(p2) � 0 and k02(p1) � 0, (5)
is satis�ed if and only if k1(0)� k2(0) � 0. Now consider case (i) in the proposition
and note that

k1(0)� k2(0) =

Z
G2(x) (h1(x)� g1(x)) dx�

Z
G1(x) (h2(x)� g2(x)) dx

=

Z
G(x) (h1(x)� h2(x)) dx

since G1 = G2 = G. Given that G is weakly convex and that H1 is a mean-preserving

spread overH2, it follows that k1(0)�k2(0) � 0. This proves that agent 1 has globally
stronger incentives in case (i).

By a similar argument, it su¢ cient to show that k2(1) � k1(1) � 0 in order to

establish that agent 2 has globally stronger incentives, given that it is still the case

that agent 1 views actions as strategic complements. In case (ii),

k2(1)� k1(1) =

Z
H1(x) (h2(x)� g2(x)) dx�

Z
H2(x) (h1(x)� g1(x)) dx

=

Z
H(x) (g1(x)� g2(x)) dx

since H1 = H2 = H. Given that H is weakly concave and G1 is a mean-preserving

contraction over G2, it follows that k2(1)� k1(1) � 0. This completes the proof.
Consider case (i) in Proposition 8, where agent 1 has globally stronger incentives,

and assume that the inequality in (5) is strict. Then, k1(0) > k2(1). Even assuming

that the two agents have homogenous preferences and abilities, it is always possible to

�nd impact and cost functions that imply that they are so sensitive to incentives (the

levels of k1 and k2) that equilibrium is at an action pro�le for which p1(a1) = 1 and

p2(a2) = 0. Then, agent 1�s draw is from H1 and agent 2�s draw from G2. Since H1
�rst order stochastically dominates G2 = G1, it follows that agent 1 is the favorite.
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Conversely, in case (ii) in Proposition 8, impact and cost functions can be found

for which p1(a1) = 0 and p2(a2) = 1 in equilibrium. Then, agent 2 is the favorite

because H2 = H1 �rst order stochastically dominates G1.

In both cases, it is agent 1 that views actions to be strategic complements. How-

ever, in one case he is the favorite and in the other case he is the underdog.
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