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Abstract

This paper studies optimal contest design in contests with noisy per-

formance. Here, contest design is a team moral hazard problem that endo-

genizes the assignment rule that maps performance pro�les into winning

probabilities. The optimal design has similar features for a wide range of

objective functions. It endogenizes standards for eligibility and the number

of prizes that are awarded may be stochastic ex ante. The model sheds

new light on preferential treatment in numerous settings, including guar-

anteed admission policies for select groups and heterogenous admissions

standards. Finally, the approach derives endogenous, microfounded, and

fully optimal contest success functions.
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1 Introduction

A broad range of economic interactions are contest-like in nature. For the pur-

poses of this paper, think of a contest as an environment in which rival agents take

costly actions that in�uence the probability with which one of a number of �xed

and identical prizes is won. Examples include rent-seeking, lobbying, college ad-

mission, innovation contests, promotion contests, sports, etc. The winners need

not necessarily be the agents who took the most costly actions. In fact, actions

are not even directly observable in most contests. Instead, prizes are typically

awarded on the basis of some noisy signal, often interpretable as performance.

In some settings it is natural to assume that prizes must be awarded to the

agents with the �best� signal or performance. There are several design issues

in such unbiased contests, many of which have been explored elsewhere.1 This

paper in contrast considers the diametrically opposite case in which there is no

obligation to award the prizes to the agents with the best signals. Thus, the paper

concentrates on the optimal design of biased contests. Depending on the appli-

cation, this may be implemented as preferential treatment, a¢ rmative action,

nepotism, or the like.

A general and unifying model of contests is examined. Special cases have

been explored before. For instance, it is known that the model can deliver mi-

crofoundations for the popular lottery contest success function (CSF) when the

contest is unbiased and there is just one prize. However, it will be argued in the

course of this paper that extensions to biased contests have not always stayed

true to the premise of these microfoundations. The resulting analysis can be

criticized as being ad hoc or poorly founded. This paper instead provides an

internally consistent treatment of the optimal design of contests. An advantage

of the approach is that contest design is based directly on the observables, i.e.

the performance pro�le. In contrast, the lottery CSF approach relies on manip-

ulating a black box that takes unobservable actions as inputs and it is therefore

unclear how to translate the ensuing �ndings into practice. The paper thus has

1Design issues include questions concerning what the optimal set of contestants is and how
they are selected, entry fees, number and distribution of prizes, etc. For these and related
questions, see e.g. Taylor (1995), Fullerton and McAfee (1999), Moldovanu and Sela (2001),
Che and Gale (2003), Drugov and Ryvkin (2020), and Fang, Noe, and Strack (2020).
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both methodological and practical implications.

Consider a college admissions problem. Here, the student�s high school GPA is

observed. It is not uncommon in the US to di¤erentiate between in-state and out-

of-state students. For instance, in the UC system, an applicant from California

who graduates in the top 9% of his high school cohort is guaranteed admission

into one of the UC campuses. This guarantee is not extended to out-of-state

students and the minimum entry requirements are likewise more stringent for

out-of-state students.2 Similarly, many countries distinguish between domestic

and foreign workers on the labor market. For instance, Canadian universities are

obligated to hire a Canadian applicant if one exists that meets the bar. Contrary

to the guaranteed admission policy, however, such an applicant is not guaranteed

a job since he may lose out to another Canadian applicant. A foreign applicant

can be hired only if no Canadian candidate meets the bar.

It is natural to assume that the governments who mandate these policies

care more about in-state or domestic individuals and that they explicitly seek to

extend an advantage to these individuals ex post. However, the model examined

in this paper can justify closely related policies even if the contest designer is

primarily interested in incentivizing e¤ort. That is, the focus is on contests as ex

ante incentive schemes.

In these examples, agents must meet certain minimum requirements to have

a chance of winning a prize. These �standards for eligibility� are part of the

design, and are thus endogenous. Existing models typically abstract away from

this design element but the current model is well suited to exploring the issue.

This is pertinent in many kinds of contests and is relevant even if agents are

symmetric ex ante. Consider research contests. The Ansari X Prize required a

crewed spacecraft to be used twice in two weeks to enter space, a requirement

that is clearly endogenous. In some contests, the requirements are very stringent

indeed, and the prize may or may not be awarded as a result. Che and Gale

(2003) mention the longitude rewards o¤ered by the British government in 1714.

These were predated by rewards o¤ered by Spain and the Netherlands that were

never awarded. The locomotive engine contest described by Che and Gale (2003)

2Compare the in-state and out-of-state instructions (accessed October 6, 2020) at
https://admission.universityofcalifornia.edu/admission-requirements/freshman-requirements/.
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drew ten entrants, of which only �ve were able to compete, and only one was

able to complete the trial successfully. Similarly, the number of recipients of the

National Medal of Science and the MacArthur Fellowship, or the �genius grant,�

varies greatly from year to year. Ex ante, the number of prizes that are awarded

appears to be stochastic.3,4 This is consistent with the model�s predictions.

The following simple model is proposed. First, actions are not directly ob-

servable but a noisy and observable signal is produced by each agent. Typically,

the noisy signal, qi, can be thought of as the stochastic quality of agent i�s per-

formance. In a promotion contest among salespeople, a salesman�s performance

is his volume of sales. In innovation contests, a �rm�s performance is the quality

of its innovation. In a competition for a merit-based scholarship or a seat at

college, a student�s performance includes his GPA to date. Similarly, a lobbyist�s

performance is how compelling he can make his agenda or proposal sound. The

agent�s action, ai, impacts the distribution, Gi(qijai), of his performance. It is
unclear what the most reasonable speci�cation of Gi(qijai) is, and in any case it
is probably sensitive to the application.5

The stochastic performance model nests popular CSFs. First, all-pay auc-

tions or deterministic contests trivially arise if Gi(qijai) is degenerate such that
performance and action coincide. Second, in Lazear and Rosen�s (1981) rank-

order tournament, the action shifts the location of the non-degenerate distrib-

ution function. Finally, there are yet other speci�cations of Gi(qijai) for which
the probability that agent i delivers the best performance exactly reduces to the

lottery CSF. Fullerton and McAfee�s (1999) research tournament with a single

prize is one such example.6 However, if this is how the lottery CSF is justi�ed,

3See https://www.nsf.gov/od/nms/medal.jsp and https://www.macfound.org/. By law, up
to 20 National Medals of Science may be awarded yearly but the number averaged just under
10/year from 1962 to 2014. Between 20 and 30 MacArthur Fellowships are awarded each year.

4In some promotion contests, it may happen that no agent is promoted if they all perform
terribly. In hiring, an extra hire may sometimes be made if two exceptional candidates apply.

5Recently, Bastani, Giebe, and Gürtler (2019) have independently proposed a virtually
identical model in the single-prize case. However, their focus is on comparative statics in
unbiased contests. See also Ryvkin and Drugov (2020) and Drugov and Ryvkin (2020).

6For other justi�cations in this vein, see Hirschleifer and Riley (1992), Clark and Riis
(1996), Baye and Hoppe (2003), and Jia (2008). Skapardas (1996) and Clark and Riis (1998)
instead take an axiomatic approach to justifying the lottery CSF. Corchón and Dahm (2011)
consider a designer who cannot commit but who is not an expected utility maximizer. These
microfoundations are in�uential and emphasized in e.g. the surveys by Konrad (2009), Vojnoníc
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internal consistency demands that any extension that moves beyond unbiased

contests must continue to respect the basic stochastic performance premise.

Thus, the idea is to view the problem as a kind of contracting or team moral

hazard problem, with the distributions Gi(qijai) as the primitives. Instead of of-
fering wage schedules as in Holmström (1982), it is winning probabilities that are

manipulated to incentivize e¤ort. The task is to design and commit to an �as-

signment rule�that maps performance pro�les into winning probabilities subject

to incentive compatibility constraints. This is a well-de�ned and entirely unam-

biguous problem. Hence, there is no reason a priori to impose ad hoc assumptions

on the functional form that the biased CSF must take or to restrict attention to

certain nice Gi(qijai). In sum, the contract theory approach makes it possible
to handle stochastic performance in much more generality. Note, however, that

adverse selection is not considered.

The general design principle turns out to be the same for a wide range of

objective functions. The optimal assignment rule is a deterministic function of

performance pro�les. It can be implemented by assigning to each agent a score

that is a compromise between the preferences of the designer and the necessity

to provide incentives. The agent with the highest overall score wins. Thus, the

paper identi�es a guiding principle for contest design.

Agents�likelihood-ratios play a key role in providing incentives. This is consis-

tent with insights from the standard principal-agent model where the likelihood-

ratio can be thought of as the incentive weight of any give wage. Negative

likelihood-ratios should be punished, which is where rationing comes in. This

is implemented by imposing endogenous standards for eligibility that may or

may not be met in equilibrium. Similarly, very large likelihood-ratios should be

rewarded if at all possible, which is where policies like guaranteed admission and

preferential hiring enter the picture.

The way in which contest design is approached has signi�cant methodological,

conceptual, and practical implications. A popular approach to contest design is

based on directly manipulating the CSF. This is problematic as the CSF is typi-

cally not a primitive of the model. Rather, it is just a reduced form that integrates

(2015), Corchón and Serena (2018), and Fu and Wu (2019). For other surveys on biased contest
design, see Mealem and Nitzan (2016) and Chowdhury, Esteve-González, and Mukherjee (2019).
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out the uncertainty over signals to calculate the agent�s winning probability as a

function of the action pro�le. A common version of this approach is to start with

the unbiased lottery CSF �where the (unobserved) action mathematically turns

out to play the same role as an (unobserved) number of tickets in an imaginary

lottery � and then either gift or tax the agent to e¤ectively alter the number

of lottery tickets that he has. Methodologically, however, it is unclear how to

carry out this taxation or transfer if the number of lottery tickets is unobserv-

able to begin with.7 Stated di¤erently, while the unbiased lottery CSF has been

microfounded, no attempt has been made to microfound the biased lottery CSF.

Indeed, in Fullerton and McAfee�s (1999) model, the endogenous CSF that is

implied by the contest design proposed here is not a lottery CSF at all.

It is also worth emphasizing how hard it is to draw practical implications from

the biased lottery approach. For instance, how should one go about levelling

the playing �eld by ensuring that each agent has an equal number of lottery

tickets when this number is not observable? In other words, it is hard to see

how policy recommendations should be implemented in practice since all results

and predictions relate to something that is unobservable. The approach in the

current paper instead allows the observable variables to take centre stage since

the assignment rule is explicitly based on the observed performance pro�le.

The existing literature based on manipulating the lottery CSF claims that the

optimal design in a one-prize, two-agent contest implements a completely level

playing �eld for almost all interesting objective functions. Stated di¤erently, the

two agents are equally likely to win the contest in equilibrium. However, this

conclusion does not hold in the stochastic performance model. In fact, which

agent should be favored depends on the underlying distribution of noise and on

the designer�s objective function. When the objective is to maximize total e¤ort,

a simple example shows that the optimal design can produce an improvement of

up to 47% over the existing approach. It is also the case that the literature has

underestimated the value to the designer of being able to ration or withhold the

prize. Rationing, when possible, is generally speaking optimal.

7In contrast, if actions are observable then it appears unlikely that a lottery would be used
in the �rst place. The all-pay auction is conceptually more satisfying in this regard as the
premise is exactly that the action (or bid) is perfectly observable.
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2 Contests with stochastic performance

This section lays out the basic model and formulates the design problem.

2.1 Contest primitives

There is a �xed set N = f1; :::; ng of risk neutral contestants or agents. Agent
i takes costly action ai 2 R+. Costs are normalized to be linear in ai. Since
costs are increasing in ai, the action can often be interpreted as e¤ort. The

action in�uences the distribution of the agent�s signal or performance, qi. The

distribution function is written Gi(qijai). This is atomless whenever ai > 0, in

which case it has density gi(qijai) > 0 and support [qi; qi], which may or may not
be bounded above or below. Note that the support is the same for all strictly

positive actions. If ai = 0, the possibility that the distribution is degenerate at

qi = qi is allowed. Given actions, agents�signals are statistically independent.

The designer can award up to m identical and indivisible prizes, with n >

m � 1. For now, think of m as well as the size or nature of each prize as

exogenous; either can be endogenized in a second step. For simplicity and to

facilitate comparison with the standard contest literature, much of the later part

of the paper in fact focuses on the case with a single prize.

Agent i assigns some exogenous value vi > 0 to winning a prize. Each agent

can win at most one prize. The value of losing is zero. The outside option

is likewise worth zero. Thus, the participation constraint is trivially satis�ed

because ai = 0 guarantees a non-negative payo¤. There is no entry fee, for now.

Special cases of the model have been considered before. For example, an

all-pay auction is a contest with no noise. Here, Gi(qijai) is degenerate for all
actions, such that qi = ai with probability one. Then, the agents with the

highest actions win in an unbiased contest. In this paper, such distributions are

ruled out. In Lazear and Rosen�s (1981) rank-order tournament, the noise is

derived from an agent who can shift the location of the distribution. Formally,

qi = fi(ai)+ "i, where "i is the realization of a random variable. Finally, di¤erent

speci�cations have been used in the literature to provide microfoundations for the

lottery contest success function. This includes a model by Fullerton and McAfee

(1999). The lottery CSF is revisited in Section 5.
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2.2 Assignment rules and the moral hazard problem

Let 
 denote the collection of all permissible sets of winners, and let ! denote an

element of 
. Thus, ! describes an assignment of prizes. It is possible that there

are restrictions on 
, which may re�ect the inability of the designer to commit to

certain assignments or legal roadblocks that make certain assignments impossible

to implement. For instance, if the designer cannot commit to ration prizes then

any ! 2 
 is restricted to have m distinct members.

Rationing is said to be possible if, for any ! 2 
, it holds that if some agent
i is a member of !, or i 2 !, then it is also the case that !nfig 2 
. That is,
it is possible to withhold one or more prizes and ! is thus not restricted to have

m members.8 No prize is awarded if ! = ;. A legal restriction that a certain

percentage of prizes must be awarded to women or minorities would likewise

imply that not all constellations of winners are feasible. Thus, 
 is taken to be

exogenous throughout.

To rule out trivialities, it is assumed that for any agent i there exists some

! 2 
 for which i 2 ! and some !0 2 
 for which i =2 !0. In other words, there
is at least one feasible assignment that entails agent i winning a prize but he is

not guaranteed to win a prize.

A contest elicits e¤ort from agents. Hence, designing a contest is at heart a

moral hazard problem. Thus, familiar logic can be applied. First, it is assumed

that the entire performance pro�le is observed. A biased contest is then one in

which the winners are not necessarily the agents with the highest performance.

Thus, let P!(q) denote the probability that the group ! 2 
 wins, given the
performance pro�le q = (q1; q2; :::; qn). Let P = fP!g!2
 denote the ensuing
�assignment rule.�This is the endogenous design instrument. It is explicitly as-

sumed that the designer can credibly and fully commit to any feasible assignment

rule; any and all restrictions are built into 
. The feasibility constraints are that

P!(q) 2 [0; 1] for all ! 2 
 and that
P

!2
 P!(q) = 1, for all q. Since P!(q) = 0

is permitted for any given !, there is more �exibility in being able to manipulate

P than being able to restrict 
.

While it is easiest to think of prizes as being identical and indivisible, the

8This is the most �exible kind of rationing. In some contests, only partial rationing may
be possible. For instance, it may be impossible to withhold more than half the prizes.
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model does permit another interpretation. Let m = 1 denote the size of a per-

fectly divisible prize and let 
 = N [ f0g. Then, Pfig(q) can be interpreted as
the share of the prize that agent i receives, with Pf0g(q) being the share that the

designer retains for herself. For instance, m = 1 may be the total wage budget,

in which case Pfig(q) � 0 can be thought of as a limited liability constraint.
Agents care only about winning or losing but not about the outcomes for

other agents. With some abuse of notation, the probability that agent i wins a

prize, given q, is

Pi(q) =
X

f!2
ji2!g
P!(q): (1)

It is often convenient to write Pi(q) as Pi(qi;q�i), where q�i denotes the perfor-

mance pro�le of agent i�s rivals. Note that di¤erent assignment rules may yield

the same reduced winning probability Pi(q) when there are multiple prizes.

Let a�i denote the vector of actions by agent i�s rivals. Given a�i, agent i�s

expected utility from action ai is now

Ui(ai; a�ijP) = vi
Z �Z

Pi(qi;q�i)gi(qijai)dqi
�Y
j 6=i

gj(qjjaj)dq�i � ai; (2)

since signals are statistically independent. The factor after vi integrates out the

uncertainty over performance pro�les and thus expresses agent i�s ex ante winning

probability as a function only of the action pro�le. In the language of contest

theory, this is the CSF. Evidently, the CSF is endogenous. The important point

is that it is endogenized by manipulating the assignment rule, which in turn is

based on something observable. Thus, the CSF is not a black box.

For an action pro�le a = (a1; a2; :::; an) to be implementable, it must consti-

tute a Nash equilibrium of the contest game. The equilibrium can be manipulated

by making changes to the assignment rule. Attention is restricted to pure strategy

implementation throughout.

2.3 The contest environment

Unless explicitly mentioned, no functional form is imposed on the distributions

Gi(qijai). Thus, the aim is to analyze contests in some generality. However,
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there are technical road blocks. Thus, the analysis relies on the standard �rst-

order approach known from classic moral hazard problems. The validity of this

approach places technical restrictions on Gi(qijai).
It will be assumed from now on that actions are continuous and that gi(qijai)

is di¤erentiable with respect to ai when ai > 0. Agent i�s likelihood-ratio,

Li(qijai) =
1

gi(qijai)
@gi(qijai)
@ai

;

plays an important role. A common assumption is that Li(qijai) is weakly in-
creasing in qi. For expositional simplicity, this paper assumes that Li(qijai) is
strictly increasing in qi. This is the monotone likelihood-ratio property (MLRP).

Assumption (MLRP): Li(qijai) is strictly increasing in qi for all ai 2 R++ and
all i 2 N .

The MLRP implies that a higher action makes a lower performance less likely.

Thus, agent i�s expected performance, E[qijai], is strictly increasing in ai.
In the standard contracting literature, the role of the MLRP is to ensure

that wage schedules are monotonic in signals. It plays a similar role here as

the standard technique can be applied whenever Pi(qi;q�i) is non-decreasing

in qi in equilibrium. Speci�cally, Rogerson (1985) combines the MLRP with

a convexity of the distribution function condition (CDFC) that assumes that

Gi(qijai) is convex in ai for all qi. The CDFC implies that the term in the

parenthesis in (2) is concave in ai for any monotonic Pi(q). The easiest way to

see this is by using integration by parts. Thus, Ui(ai; a�ijP) is concave in ai,
given a�i. Consequently, the �rst-order condition identi�es a best response.

Assumption (CDFC): Gi(qijai) is convex in ai for all qi 2 [qi; qi] and all i 2 N .

The Fullerton and McAfee (1999) model satis�es the MRLP and the CDFC.

Indeed, Rogerson�s (1985) leading example is a special case of that model. Thus,

this paper concentrates on contests where the MLRP and the CDFC hold.
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3 Assignment independent contests

This section begins the analysis by solving a tractable yet �exible class of contests.

The next section considers a more general contest environment.

3.1 The objective function and the design problem

The designer is endowed with a Bernoulli utility function, �(q; a), which is al-

lowed to depend on the performance pro�le and the action pro�le. The main

restriction is that the designer does not care about the identity of the winners or

the assignment. In other words, her preferences are assignment independent.

The designer may care directly about the action pro�le. The most com-

mon assumption in the contest literature is that the designer is interested in

maximizing total e¤ort, or �(q; a) =
P

j2N aj. Another common objective func-

tion in single-prize contests involves maximizing the highest action, or �(q; a) =

maxfa1; a2; :::; ang. In these contests, qi is just some signal about e¤ort but qi is
in itself of no interest to the designer. For instance, ai may capture human-capital

accumulation that is of importance in the long run, whereas qi is performance in

the short run that is of lesser or no value but is more readily observable.

However, the designer may also care directly about performance. For instance,

consider a contest for one or several promotions among salesmen akin to Lazear

and Rosen (1981). Here, the employer is presumably not directly interested

in the salesmen�s e¤orts but rather in the total volume of sales, or �(q; a) =P
j2N qj. Alternatively, consider �(q; a) = maxfq1; q2; ::; qng. This Bernoulli

utility function applies when the designer only cares about the best performance,

even though this may or may not equal the winner�s performance. For instance,

a �rm may pursue the best product design proposed by a disparate group of in-

house developers, yet may at the same time choose to promote a developer whose

own design was inferior to handle the product launch.

Since the designer�s preferences are assignment independent, she is ex post

indi¤erent to how prizes are assigned. Note that the commitment problem is less

severe in this case, as there is no ex post incentive to deviate from the promised

assignment rule. Moreover, the designer�s expected utility is only a function of

the induced action pro�le. It does not depend on the assignment rule used to
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achieve the action pro�le. Thus, the designer sets out to design the assignment

rule P to implement an action pro�le a that maximizes her expected utility,

U0(a) = E[�(q; a)ja]:

Note that the CDFC implies that E[
P

j2N qjja] is concave in actions. In compar-
ison, E[

P
j2N ajja] is linear in actions. Hence, the optimal action pro�le is likely

to be di¤erent depending on the designer�s preferences. The analysis proceeds

under the assumption that U0(a) is monotonic.

Definition (AIM Contests): A contest is said to be Assignment Independent

and Monotonic (AIM) if U0(a) is strictly increasing in ai for all i 2 N .

The de�ning feature of any AIM contest is that any optimal action pro�le must

be on the frontier of the set of implementable or feasible action pro�les. Thus,

the incentive compatibility problem takes centre stage. Therefore, this type of

contests is the ideal starting point for understanding the incentive problem and

how contest design incentivizes agents.

Two central messages emerge. First, for any frontier action there is an es-

sentially unique assignment rule that is incentive compatible. In other words,

incentive compatibility more or less dictates contest design. Thus, for AIM con-

tests, the designer�s only real degree of freedom comes from determining which

exact frontier action to induce. Second, the fundamental structure of the con-

test design is the same for all frontier actions. Hence, the principles underlying

contest design is the same in all AIM contests.

3.2 Maximal individual and group e¤ort

To understand incentives, it is useful to start by focusing on one given agent in

isolation. Given (2), the marginal return to a small increase in ai is

@Ui(ai; a�ijP)
@ai

= vi

Z �Z
Pi(qi;q�i)Li(qijai)gi(qijai)dqi

�Y
j 6=i

gj(qjjaj)dq�i � 1:

(3)

Since the expected value of Li(qijai) is zero, it follows from the MLRP that

Li(qijai) is strictly negative for small qi and strictly positive for large qi. It is
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clear that (3) is maximized if the prize is assigned to agent i if and only if Li(qijai)
is positive. When Li(qijai) is positive, a marginal increase in ai makes it more
likely that a performance close to qi is realized. There is no better carrot than

promising the agent a prize for such performances and no better stick than to

deny him a prize for performances that become less likely if his action increases.

Proposition 1 Let ai denote the highest action that agent i can be induced to
take. If ai > 0 then there is an essentially unique Pi(qi;q�i) function that induces

ai.9 This takes the form of a threshold rule,

Pi(qi;q�i) =

(
1 if qi � bqi(ai)
0 otherwise

; (4)

where bqi(ai) denotes the unique value of qi for which Li(qijai) = 0.
Proof. See the Appendix.
Next, consider a contest in which n1 � n agents are identical to agent 1 ex

ante. Let N1 � N denote this group of agents. Assume that 
 is symmetric

for these agents.10 Assume moreover that the contest designer is restricted to

treating them symmetrically and to inducing the same action for all agents in

the group. In fact, it turns out that the optimal way to induce identical actions

within the group is to use a symmetric design. Let as1 � a1 denote the highest

implementable symmetric action in the group and assume that as1 > 0.
11 De�ne


N1(qjas1) = f! 2 
j
X

i2!\N1
Li(qijas1) �

X
i2!0\N1

Li(qijas1) for all !0 2 
g

as the set of assignments where the aggregate likelihood-ratio is maximized within

the group, given the performance pro�le and the action as1. The assignment rule

must then satisfy X
!2
N1 (qja

s
1)
P!(q) = 1:

9Here, Pi(qi;q�i) is �essentially unique�because changes on a set of q of measure zero are
irrelevant. The proof of the proposition outlines a method to characterize ai.

10Consider i; j 2 N1 and assume that there is some ! 2 
 with i 2 ! but j =2 !. Then, there
is another !0 2 
 that is identical to ! except that i has been replaced by j.

11Roughly speaking this requires that the valuation v1 is large enough relative to the marginal
improvement in the distribution of performance to make active participation worthwhile. This
turns out to be the case in the Fullerton and McAfee (1999) model for any v1 > 0.
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That is, the assignment must maximize the aggregate likelihood-ratio in the

group. The proof is omitted but it follows the same logic as the proof of Propo-

sition 2 in the next section. If rationing is allowed and there are no restrictions

on 
 then agents in N1 with negative likelihood-ratios are excluded, while the

agents with the highest positive likelihood-ratios are assigned a prize. This does

not uniquely pin down the assignment rule as it does not describe how to assign

prizes that are not awarded to agents in the group; 
N1(qjas1) typically has more
than one element. That is, it does not say whether and which agents outside the

group should be awarded a prize, if any are left over.

3.3 Optimal design with two groups

Assume now that there are exactly two groups. There are n1 contestants that

are identical to agent 1 and n2 that are identical to agent 2, n1+n2 = n. Let N1
and N2 denote the two groups. Assume that 
 is group-symmetric. The designer

is restricted to inducing group-symmetric actions, which again are best achieved

by using a group-symmetric assignment rule.12 The frontier of the feasible set is

characterized and interpreted next. Recall that the optimal action pro�le must

be on the frontier in any AIM contest.

A natural starting point is to identify the �corners�of the feasible set. The

highest action that agents in group 1 can be induced to take is as1. To implement

this action, the assignment rule must satisfy the criteria described after Propo-

sition 1. In particular, the assignment must belong to 
N1(qjas1). Thus, there is
less freedom to reward agents in group 2. Let as2 denote the highest action that

agents in group 2 can be induced to take, given agents in group 1 take action as1.

The interesting case is when as2 > 0. Then, the assignment rule must pick one of

the assignments in


N1;N2(qjas1; as2) = f! 2 
N1(qjas1)j
X

i2!\N2
Li(qijas2)

�
X

i2!0\N2
Li(qijas2) for all !0 2 
N1(qjas1)g:

12This is not restrictive in the case where n1 = n2 = 1. Extensions to more groups are
discussed later but do not add much economic insight. Note that �(q;a) is not restricted to be
group-symmetric.
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Since it takes all agents across both groups into consideration, 
N1;N2(qjas1; as2)
has a unique element almost always. Hence, the assignment rule is essentially

unique. This is due to the MLRP which implies that it is a probability zero event

that two or more agents have the same likelihood-ratio.13

This design has an essentially sequential structure. Whether an agent in group

1 is assigned a prize is completely independent of the performance of agents

in group 2. Agents in group 2 �ght over what is left after group 1 leaves the

table. This design resembles the preference given to Canadian candidates on

the academic job market, as described in the introduction. However, the model

does not stipulate that the bar should be the same for the two groups, as this is

determined where likelihood-ratios are exactly zero in equilibrium.14

The parts of the frontier that is not at the corners are more interesting. Here,

a1 2 (as1; as1) and a2 2 (as2; as2), where as1 and as2 are de�ned analogously to as2 and
as1, respectively. This means that neither groups�equilibrium action in isolation

pins down part of the assignment. Thus, there is more design �exibility. The

assignment rule must now compromise between giving incentives to both groups

of agents simultaneously. Again, it should be clear that the likelihood-ratios play

a crucial role, but now they can be compared across agents in the two groups.

Proposition 2 Consider a contest with two groups, and assume that 
 is group-
symmetric and that group-symmetric actions must be implemented. Any action

pro�le a that is on the frontier of the feasible set with a1 2 (as1; as1) and a2 2
(as2; a

s
2) is implemented by an assignment rule for whichX

!2
(q;�ja1;a2)
P!(q) = 1;

13AIM rules out that the designer cares exclusively about the actions of agents in group 1
(e.g. in-state students). In such a case, implementing as1 would be optimal but it would not
matter which value of a2 � as2 is implemented alongside a

s
1. In this case, any optimal action

pro�le is on the boundary �but not necessarily the frontier �of the feasible set. Nevertheless,
any optimal assignment rule must have the features discussed at the end of Section 3.2.

14However, consider a contest in which Gi(qijai) = fi(ai)H(qi)+(1� fi(ai))T (qi), where H
and T are distribution functions and fi(ai) 2 (0; 1) is increasing and concave. The MLRP and
the CDFC are satis�ed if H dominates T in terms of the likelihood-ratio. Then, the likelihood-
ratio is zero where H 0(q) = T 0(q), which is independent of the agent�s action and identity.
Hence, the bar is the same for both groups.
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with


(q;�ja1; a2) = f! 2 
j
X

i2!
�iviLi(qijai) �

X
i2!0

�iviLi(qijai) for all !0 2 
g;

and where �i 2 (0;1), i 2 N , is endogenously determined and group-symmetric.
Since 
(q;�ja1; a2) has a unique element almost always, the assignment rule is
essentially unique.

Proof. See the Appendix.
As mentioned, in any AIM contest an action pro�le on the frontier of the

feasible set is optimal. Irrespective of the exact form of AIM preferences or the

exogenous restrictions on 
, it is now clear that the structure of the optimal

contest is remarkably robust. Speci�cally, the optimal assignment is determined

by a comparison of scaled likelihood-ratios.

The assignment rule in Proposition 2 is fairly intuitive. As discussed in the

previous subsection, the power of the incentives facing agent i are determined by

the size of Li(qijai) when he is assigned a prize. Hence, the �i�s are calibrated to
obtain incentive compatibility across groups. When there are no restrictions on


, the assignment rule can be implemented by giving agent i with performance

qi a score of si(qi) = �iviLi(qijai) and letting the agents with the highest positive
scores win a prize but withholding prizes from agents with negative scores.

In other words, bqi(ai) as de�ned in Proposition 1 can be seen as a minimum
standard for eligibility. At a selective college, this is the minimum admission

standard where any student with a lower SAT score is summarily rejected. In a

promotion contest, it is the bar that the agent must meet to even be considered

for a promotion. In an innovation contest, it is the standard below which the

innovation is deemed to be unquali�ed for consideration, e.g. a drug that fails

clinical trials or a reusable spacecraft that is unable to take o¤ twice in two

weeks. Note that if the designer can commit to rationing, then rationing must

occur with positive probability in equilibrium. Since rationing impacts the design,

it is clearly of value to the designer to be able to ration.

To interpret the assignment rule, the case where likelihood-ratios are bounded

above is particularly interesting. Then, it must generically hold that �1v1L1(q1ja1)
and �2v2L2(q2ja2) are di¤erent in equilibrium. Assume for the sake of argument

15



that the former is larger, and de�ne qt1 as the threshold where

�1v1L1(q
t
1ja1) = �2v2L2(q2ja2):

Thus, an agent in group 1 whose performance exceeds qt1 is guaranteed to outscore

all agents in group 2. Such an agent can never lose to an agent in group 2. Indeed,

the agent is guaranteed a prize if n1 � m and 
 is unrestricted. If n1 > m then

the agent may lose but only if he is outscored by su¢ ciently many agents in his

own group. If qt1 is close to q1 then this happens with only a small probability,

i.e. the agent is almost guaranteed to win a prize. Thus, this is close to the kind

of guaranteed admission that is sometimes given to the best in-state students.

4 Costly and separable contests

The previous section established that the assignment rule is dictated by the

agents� incentive compatibility constraints when an action pro�le on the fron-

tier is implemented. This lack of �exibility may prove costly to the designer if

her preferences are not assignment independent. In principle, it may be better

to induce an action pro�le that is not on the frontier of the feasible set. These

actions can be induced in many ways, meaning that the assignment rule can now

better re�ect the designer�s objectives.

Thus, the designer�s Bernoulli utility is now allowed to depend on the assign-

ment and it is therefore written �!(q; a) in the event that the assignment is !.

This is assumed to be separable in the sense that

�!(q; a) = �(q; a) + �!(a); ! 2 
: (5)

Note that preferences are assignment independent if �!(a) = �(a) for all ! 2 
.
Conversely, separable contests where �(q; a) = 0 is constant is perhaps of special

interest. Then, �!(q; a) = �!(a) captures any contest setting where q is a signal

that is worthless on its own, but which is informative about actions. Much of the

contest literature is of course precisely concerned with objective functions that

depend exclusively on actions.
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The assignment and the action pro�le may interact. As an example, �!(a) =P
i2! ai captures a case where the designer only cares about the actions of the

winners. For a �rm, these might be the employees that are promoted or retained

in the organization after a trial period or internship. Similarly, a university is

likely to be more interested in the e¤ort undertaken by any given student to

prepare for university in the event that he is admitted than if he is not.

It is also assumed that preferences are monotonic, or more precisely that for

any performance pro�le and any assignment it holds that

@ (U0(a) + �!(a))

@ai
� 0 for all i 2 N with

@ (U0(a) + �!(a))

@ai
> 0 for all i 2 !;

(6)

where U0(a) = E[�(q; a)ja] as before. Thus, for any given assignment, the de-
signer is better o¤ if agents take higher actions.

Definition (SEP-M Contests): A contest is Separable and Monotonic (SEP-

M) if (5) and (6) hold.

The next example provides another illustration of the �exibility of SEP-M

contests. It also demonstrates that the second-best or optimal action pro�le is

not necessarily on the frontier of the feasible set even when �!(q; a) is strictly

increasing in all actions.

Example 1.I (Social welfare versus effort maximization): Consider

a contest with a single prize that must be allocated. The designer cares at least

in part about social welfare. For instance, a politician may care both about

social welfare and the bene�ts he derives personally from the lobbyists�e¤orts to

persuade him to adopt one particular policy. Since the utility of a winning agent

is vi � ai and the utility of a losing agent is �ai, this can be captured by

�fig(q; a) = 
�
vi �

P
j2N aj

�
+ (1� )

P
j2N aj

= vi + (1� 2)
P

j2N aj (7)

for i 2 N , where  2 (0; 1) is the weight assigned to agents�utility. Note that this
is a separable contest. Epstein, Mealem, and Nitzan (2011) describe a contest

much like this; their approach is reevaluated in Section 5.
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Assume that v1 > v2 � v3 � ::: � vn. Based on (7), the optimal design is

trivially to assign the prize to agent 1 if  > 1
2
, regardless of the performance

pro�le. In this case, no agent wastes e¤ort in equilibrium. The case where  < 1
2

is more interesting, as the con�ict between social welfare and the private rewards

to the designer then presents a real trade-o¤. The contest is now a SEP-M

contest. Assume that ai > 0 for all i 2 N . Imagine inducing an action pro�le
on the frontier of the feasible set. By de�nition, aggregate e¤ort is then belowP

j2N aj. At the same time, agent 1 must win with a probability bounded away

from 1. Otherwise, it is impossible to induce e¤ort from any agent, contradicting

the premise that the action pro�le is on the frontier. Let t < 1 denote any such

upper bound. Then, expected utility is bounded above by

 (tv1 + (1� t) v2) + (1� 2)
P

j2N aj: (8)

Now let v1 increase while simultaneously changing G1 in such a way that a1
and t are unchanged (the best-shot model in Section 5 describes a parameterized

distribution that can be manipulated to achieve this). When v1 becomes large

enough, (8) is strictly smaller than v1, which is the utility that the designer can

derive from just giving the prize to the agent for sure. Hence, no frontier action

can be optimal even though the designer�s Bernoulli utility is strictly increasing

in all actions. �

As before, the optimal design is characterized for contests with two groups of

agents. For concreteness and brevity, focus is also on contests where any second-

best action pro�le is interior, or ai > 0 for all i 2 N , but not on the frontier
of the feasible set. That is not to say that the second-best action cannot be on

the frontier of the feasible set, but in that case the design must take the form in

Proposition 2.

Proposition 3 Consider a SEP-M contest with two groups, and assume that 


is group-symmetric and that group-symmetric actions must be implemented. Any

second-best action pro�le a that is interior and not on the frontier of the feasible

set is optimally implemented by an assignment rule for whichX
!2
SEP�M (q;�ja1;a2)

P!(q) = 1

18



with


SEP�M(q;�ja1; a2) = f! 2 
j�!(a) +
X

i2!
�iviLi(qijai)

� �!0(a) +
X

i2!0
�iviLi(qijai) for all !0 2 
g

and where �i 2 (0;1), i 2 N , is endogenously determined and group-symmetric.

Proof. See the Appendix.
The presence of the �!(a) term in the designer�s utility implies that she has

an ex post interest in the assignment. Ideally, the designer would prefer to se-

lect an assignment that maximizes �!(a). However, this may not be incentive

compatible. Thus, each possible assignment, !, is assigned an aggregate score,

�!(a) +
P

i2! �iviLi(qijai). This score re�ects a compromise between two con-
siderations. First, �!(a) is directly relevant to the designer but as mentioned

this does not take incentive compatibility into account. Hence, the second term,P
i2! �iviLi(qijai), is present to ��x�the problem and ensure that active agents�

�rst-order conditions are satis�ed.15

Compared to Proposition 2, each assignment is thus given an additive bonus,

�!(a), that is independent of the performance pro�le. This bonus re�ects what-

ever preference the designer has over the identity and composition of the winners.

Recall that this is di¤erent from any legal restrictions placed on 
 which limits

the �nal assignment. Consider Example 1 again, and assume that there are two

agents and  2 (0; 1
2
). It is intuitive that both agents should be induced to be

active as long as  is small or the agents are not too asymmetric. In this case, the

designer cares a bit but not too much about which agent is awarded the prize.

Then, agent i is simply given a score of vi + �iviLi(qijai).
The next example shows how the SEP-M model applies to contest in which

the prizes are costly to the designer. Other things equal, she would rather not

award any prizes ex post, but this would create an incentive problem ex ante.

15Action pro�les near the frontier of the feasible set presumably have very large �i�s. As the
�i�s goes to in�nity, the �!(q;a) terms lose their signi�cance and the assignment rule converge
to that in Proposition 2. Note that the �i�s can go to in�nity while their ratios converge to the
ratios implied by Proposition 2.
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Example 2.I (Costly prizes and rationing): Consider a contest in which

�!(q; a) =
P

i2N ai � C(j!j);

where C(�) is an increasing and convex cost function that measures how costly it
is to the designer to award j!j prizes, with C(0) = 0. Rationing is assumed to be
possible and there are no restrictions on 
 except for the restriction that at most

m prizes can be allocated. However, for this example allow m = n. Since the

designer is then free to decide how many prizes to assign, the optimal number of

prizes is e¤ectively endogenized.

With two groups of agents that are both active, the assignment ! obtains a

score of X
i2!
�iviLi(qijai)� C(j!j):

Hence, among all assignments in which a �xed number of prizes are awarded, the

assignment with the highest score is the one in which the agents with the highest

�iviLi(qijai) are awarded a prize. Thus, agents can be arranged in descending
order of their values of �iviLi(qijai). If x prizes are awarded, they are awarded to
the �rst x agents in line. Now compare two assignments ! and !0 that consist of

the agents with the x and x0 = x+ 1 highest values of �iviLi(qijai), respectively.
Let agent j be the agent who is in !0 but not in !. The additional prize should

be awarded if and only !0 scores higher than !, or

�jvjLj(qjjaj) > C(x+ 1)� C(x):

Thus, in equilibrium it is straightforward to determine the number of prizes to

be awarded and the identity of the winners.

There are lucky performance pro�les where many or perhaps every agent is

awarded a prize. On the other hand, there are also performance pro�les where

all agents have negative likelihood-ratios, in which case no prizes are awarded. In

short, the designer should not commit to awarding a �xed number of prizes and

the number of prizes that are actually awarded is stochastic ex ante.

The same analysis applies if �!(q; a) =
P

i2! ai � C(j!j), except that in this
case the marginal score of agent j is aj + �jvjLj(qjjaj). �
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5 Revisiting lottery contests

This section utilizes two di¤erent model speci�cations to illustrate some of the

main results. These model speci�cations also make it possible to reexamine some

of the key results from the contest literature that relies on variants of the lottery

CSF. Thus, it is assumed throughout that there is a single prize.

The best-shot model: Assume that agent i�s distribution function can be

written

Gi(qjai) = Hi(q)fi(ai), q 2 [qi; qi]; (9)

for all i 2 N , where Hi(q) is a distribution function with density hi(q). Thus,
Gi(qijai) is the distribution of the best draw from Hi(q) �the best-shot �out of

a total of fi(ai) � 0 draws. In an innovation contest, Hi can be interpreted as

the distribution of the quality of a single idea and fi as the number of ideas. The

MLRP and the CDFC are both satis�ed as long as f 0i(ai) > 0 � f 00i (ai).
The setting is inspired by Fullerton and McAfee (1999). However, they assume

that Hi(q) = H(q) for all i 2 N . In words, all agents have ideas that are equally
good ex ante but some agents may have more ideas than others. In this case,

agent i wins an unbiased contest with an ex ante probability of

pi(a) =
fi(ai)Pn
j=1 fj(aj)

; (10)

when
Pn

j=1 fj(aj) > 0. This is intuitive. After all, agent i has fi(ai) ideas out of

a total of
P

i2N fj(aj) idea. Each idea has an equal chance of being the best idea,

thus yielding the CSF in (10). Hence, this produces the popular lottery CSF.

However, (10) does not obtain when the Hi�s are allowed to be heterogenous.

The reason is that di¤erent agents now draw ideas that are of di¤erent quality

ex ante. Such a setting thus cannot be analyzed using (10) but it succumbs to

the approach suggested in this paper. Henceforth, the �best-shot model�refers

to (9) with potentially heterogenous Hi�s. The special case in which all Hi�s are

identical is referred to as the Fullerton and McAfee (1999) model. �

The exponential-noise model: The exponential-noise model is due to Hirschleifer

and Riley (1992). Importantly, it is assumed that there are precisely two agents.
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Given ai, agent i�s observable performance is exponentially distributed with mean

fi(ai) > 0 when ai > 0, i = 1; 2. That is, the distribution function is

Gi(qjai) = 1� e�
q

fi(ai) , q 2 [0;1): (11)

Equivalently, performance is impacted by multiplicative noise such that qi =

fi(ai)"i, where "i is exponentially distributed with mean one. Hirschleifer and

Riley (1992) showed that this yields the lottery CSF in an unbiased contest.

Since fi(ai) is the expected value of agent i�s performance, it is natural to

assume that f 0i(ai) > 0 and f
00
i (ai) � 0. The MLRP is then satis�ed but the CDFC

is not. Nevertheless, it will be established that the agents��rst-order conditions

are su¢ cient for incentive compatibility along the frontier of the feasible set under

the assumption that

fi(ai) = �ia
ri
i ; (12)

where �i > 0; ri 2 (0; 1]; i = 1; 2. This is the most commonly used impact

function used in the contest literature. �

5.1 Two sides of the same coin

This subsection contrasts the best-shot and exponential noise models under the

assumption that (12) holds and that n = 2. In keeping with most of the literature,

rationing is ruled out to start and the contest is assumed to be an AIM contest.

Thus, the frontier of the feasible set is of interest. Some details are relegated to

Appendix B, where both models are considered in more generality.

The two models turn out to be in some ways on opposite sides of the same

coin. To begin, compare the adjusted scores in the two models. If a� is the

equilibrium action pro�le, agent i�s score in the best-shot model is

si(qi) = �iviLi(qija�i )
= � i (1 + lnGi(qija�i )) ; (13)

where

� i = �ivi
f 0i(a

�
i )

fi(a�i )
:
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In the exponential noise model, agent i�s score is

si(qi) = �iviLi(qija�i )
= �� i (1 + ln (1�Gi(qija�i ))) ; (14)

where � i is de�ned as before. In either case, the optimal assignment rule can be

implemented as follows. First, qi is translated into the quantile where it sits in

the equilibrium distribution Gi(qija�i ). This intermediate score then undergoes a
monotonic transformation before being multiplied by an endogenous and identity-

dependent constant, � i. The winner is the agent with the highest �nal score.

In the two-agent case only the relative sizes of � 1 and � 2 matter. Thus, de�ne

c = �2
�1
. For any given c 2 [0;1), it is possible to derive the action pro�le that is

being implemented. The entire frontier can thus be traced out by letting c run

from 0 to 1.16 Remarkably, the frontiers coincide in the two models.

Proposition 4 Consider the two-agent best-shot or exponential noise model and
assume that fi(ai) = �ia

ri
i , �i > 0; ri 2 (0; 1], i = 1; 2. When rationing is ruled

out, the frontier of the feasible set contains the corners (a1; 0) and (0; a2), where

ai =
rivi
e
. (15)

Any interior action pro�le a� = (a�1; a
�
2) is on the frontier if and only if

a�1 = r1v1F

�
1

c

�
and a�2 = r2v2F (c) (16)

for some c 2 (0;1), where c = �2
�1
and

F (c) =

(
c

(1+c)2
ec�1 if c 2 (0; 1)

c2+c�1
(1+c)2

e
1�c
c if c � 1

:

Here, F (c) is strictly increasing in c and satis�es F (1) = 1
4
. Hence, a�2 is increas-

ing in c and a�1 is decreasing in c.

16The characterization result can be extended to any increasing and concave fi(ai) in the
best-shot model (see Appendix B).
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Proof. See the Appendix.
Note that (15) and (16) do not depend on H1 and H2 in the best-shot model,

nor do they require H1 = H2. The designer can always transform qi into the

quantile eqi = Hi(qi) and use this as the basis for contest design.17 Given ai, the
distribution of eqi is eqfi(ai)i , eqi 2 [0; 1], independently of what Hi(qi) is. It follows
that the set of implementable action pro�les is independent of H1 and H2.

It is now possible to derive the optimal action pro�le and thus the optimal

assignment rule in any AIM contest. The next result illustrates this under the

assumption that �(q; a) = a1+a2, which is the leading example in the literature.

Proposition 5 Consider the two-agent best-shot or exponential noise model and
assume that fi(ai) = �ia

ri
i , �i > 0, ri 2 (0; 1], i = 1; 2. Let k = r2v2

r1v1
and assume

that k � 1 Finally, assume that the prize has to be awarded. Then, total e¤ort,
a1 + a2, is maximized by letting �2

�1
= r2v2

r1v1
(or c = k). In equilibrium, actions are

a1 = r1
k

(k + 1)2
e�

1
k
(k�1)v1 = r2

1

(k + 1)2
e�

1
k
(k�1)v2

a2 = r2
k2 + k � 1
(k + 1)2

e�
1
k
(k�1)v2

and total e¤ort is

a1 + a2 =
k

k + 1
e�

1
k
(k�1)r2v2: (17)

As an alternative objective, consider �(q; a) = q1 + q2. Then, the designer�s

problem is to maximize the total expected performance, E[q1ja1] +E[q2ja2]. This
is f1(a1) + f2(a2) in the exponential model, but in the best-shot model it also

depends on H1 and H2. Hence, the optimal design is sensitive to the model. This

may sound unsurprising but that is because the roles of the distribution function

and the performance pro�le are made explicit here. After all, whenever �(q; a) is

assumed to depend only on a �as is implicitly the case in most papers that rely

on the lottery CSF �then the optimal action pro�le must be the same in the two

models, as illustrated in the previous proposition.

17It is also for this reason that �i does not appear in (16). After all, the distribution can be

written as Gi(qijai) =
�
Hi(qi)

�i
�arii . Hence, changing �i is similar to changing Hi.
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There are a number of other di¤erences between the models as well. Compare

(13) to (14) once more. First, the range of the agent i�s score is [�� i;1) in the
former but (�1; � i] in the latter. Hence, a larger � i moves the range of scores
in opposite directions. Another di¤erence is that (13) relies on Gi(qija�i ) whereas
(14) relies on 1 � Gi(qija�i ). For these reasons, winning probabilities move in
opposite direction along the frontier of the feasible set.

Proposition 6 Consider the two-agent best-shot or exponential-noise model and
assume that fi(ai) = �ia

ri
i , �i > 0, ri 2 (0; 1], i = 1; 2. Along the frontier of the

feasible set when rationing is ruled out, agent 2�s equilibrium winning probability

is W (c) in the best-shot model but 1�W (c) in the exponential-noise model, where

W (c) =

(
1
1+c
ec�1 if c 2 (0; 1)

1� c
1+c
e
1�c
c if c � 1

and c = �2
�1
. Here, W (c) is strictly increasing in c and satis�es W (0) = e�1 =

0:368, W (1) = 1
2
, and limc!1W (c) = 1� e�1 = 0:632.

Proof. See the Appendix.
Proposition 6 implies that higher c = �2

�1
favors agent 2 in the best-shot

model but does the opposite in the exponential noise model, at least in terms of

equilibrium winning probabilities. Combining Propositions 5 and 6, note that it

is not optimal to level the playing �eld when the objective is to maximize a1+a2.

In fact, Proposition 6 implies that the identity of the agent who is favored di¤er in

the best-shot and exponential-noise model. In short, the stochastic performance

approach does not have an unambiguous policy implication in this regard. Again,

the details of the performance distributions matter.

The analysis has ignored rationing. In AIM contests with rationing, agent i

has zero chance of winning the prize if qi < bqi(ai). In the best-shot model, (13)
implies that bqi(ai) satis�es Gi(bqi(ai)jai) = e�1. Thus, there is a �xed chance,

e�1 = 0:368, that any given agent will be disquali�ed for failing to meet the

standard. In a sense, the standard is the same for all agents in �probabilistic�

terms. Appendix B extends Propositions 4 and 5 to allow rationing in the best-

shot model. It remains the case that �2
�1
= r2v2

r1v1
(or c = k) maximizes total e¤ort.

However, due to the extra threat of rationing, both agents work harder.
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5.2 Contest success functions

Given instruments � 1 and � 2, it is possible to derive the implied contest success

functions. As is demonstrated in Appendix B, these CSFs turn out not to be

lottery CSFs. Thus, even if the starting point is an unbiased lottery contest as in

the Fullerton and McAfee (1999) or exponential-noise models, endogenizing the

contest design fundamentally alters the resulting CSF.18

This last point clashes with a popular approach in the existing contest liter-

ature. It is common to assume that the designer can implement a CSF that is

some variant of

pi(aj�;b; z) =
bifi(ai) + �iPn

j=1 (bjfj(aj) + �j) + z
: (18)

Here, one or more of � = (�1; :::; �n), b = (b1; :::; bn), and z are considered to

be design instruments. Typically, each variable is restricted to be non-negative.

The interpretation of �i is that it captures agent i�s head start, while bi is a

multiplicative bias or handicap. Thus, it is as if agent i earns bifi(ai)+ �i lottery

tickets. Finally, z can be thought of as the number of lottery tickets that the

designer reserves for herself, thus admitting the possibility of rationing.

Fullerton and McAfee�s (1999) model provides a microfoundation for the un-

biased lottery CSF, pi(aj0;1; 0). However, it is hard to reconcile (18) with this
model, where actions are presumably unobservable.19 If actions are unobservable,

then how are biases and head starts applied to fi(ai) in order to calculate the

new number of tickets? The problem is that (18) appear to treat the CSF as the

primitive. However, it is the performance technology Gi that is the primitive.

The CSF is just a reduced form that integrates out the uncertainty over q.

Another way of expressing the problem is that the literature has not provided

a microfoundation for (18). Nevertheless, it turns out to be possible to do so.

Proposition 7 Consider the Fullerton and McAfee (1999) model. Assign agent
i with performance qi a base score of sBi (qi) = H(qi)

1=bi 2 [0; 1], bi > 0. Draw

18There are also axiomatic justi�cations for the lottery CSF, see Skaperdas (1996) and Clark
and Riis (1998). However, once contest design is endogenized, there appear little reason to think
that the designer will voluntarily limit herself to contests that satisfy nice axioms.

19If actions are observable, then an auction-like mechanism is likely to be preferable to a
lottery contest.
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an auxiliary score sAUXi for agent i from the distribution
�
sAUXi

��i, sAUXi 2 [0; 1],
�i � 0. Let agent i�s �nal score be sFMi (qi) = maxfsBi (qi); sAUXi g. Finally, draw
a score sD for the designer from the distribution

�
sD
�z
, sD 2 [0; 1], z � 0. Let

the individual (agent or designer) with the highest score win. Then, the CSF is

given by (18).

Proof. See the Appendix.
The transformation of qi into a base score maps the idea from the support

[q; q] into a quality index on [0; 1], where the index is identity dependent via bi.

Given action ai, agent i then draws bifi(ai) ideas from a uniform distribution on

this index. He is then given �i fake ideas by the designer, again drawn from a

uniform distribution. The agent now has a total of bifi(ai) + �i real and fake

ideas. The designer also draws z fake ideas from a uniform distribution. Each

idea, real or fake, has an equal chance of winning, yielding (18).

The stochastic nature of the fake ideas may or may not be palatable. Thus,

Proposition 7 should not be taken as a defense of (18) but rather as a clari�cation

of the lengths one must go to in order to justify it. The transformation of the

performance into a quality index seems more appealing. However, this particular

transformation is still ad hoc.20 In fact, Proposition 7 merely shows that (18)

can be implemented in the Fullerton and McAfee (1999) model. Hence, it follows

that the set of implementable actions must in reality be strictly larger than the

set of actions that can be implemented by using (18).21

One drawback of using (18) for contest design is that it says little about how

to implement the optimal design in practice. For instance, how exactly is the

playing �eld supposed to be made level if the designer does not observe actions?

Proposition 7 tells us how this can be achieved by linking design to the observable

signals. In other words, the kind of story embodied in Proposition 7 is important

if the desire is to apply lessons from (18) in practice. The issue is that (18)

pushes the performance pro�le to the back, which is unfortunate since this is the

20Similarly, giving agents a multiplicative bonus in the exponential noise model yields
pi(aj0;b; 0). This can also be obtained by variying the �i parameter in Clark and Riis�(1996)
random utility framework. Again, these are ad hoc ways to manipulate the contest.

21Fu and Wu (2020) and most of the prior literature restrict head starts to be non-negative.
Drugov and Ryvkin (2017) show that negative head starts may be better. However, negative
head starts cannot be justi�ed by Proposition 7.
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observable variable. The stochastic performance approach in the current paper

has the distinct advantage that it starts directly from the observables.

The following three examples contrast the two approaches. The gain from de-

signing a fully optimal contest can be sizeable and welfare and policy implications

may be substantially di¤erent as well.

Example 1.II (Social welfare versus private rewards): Epstein, Mealem,

and Nitzan (2011) describe a contest much like the one described in Example 1.I.

They assume that there are only two contestants, with v1 > v2 > 0. They con-

sider a version of (18) with z = 0 and � = 0 but allow b to be a design instrument.

Assuming that f(ai) = ari , r 2 (0; 1], Epstein, Mealem, and Nitzan (2011) show
that if  exceeds a threshold 0 2

�
0; 1

2

�
then b2 = 0 is optimal. In this case,

agent 1 wins with probability one and neither agent exerts any e¤ort. If  < 0
then b1; b2 > 0 and both agents exert e¤ort in equilibrium.

A similar conclusion obtains in the current paper but with some quantitative

di¤erences. Proposition 7 implies that (18) underestimates the expected payo¤

of inducing both agents to be active in the best-shot or exponential-noise models.

The reason is that the designer has more �exibility than what is suggested by

(18). Hence, it is optimal to induce active participation by both agents for more

values of . In short, the current model predicts that the cut-o¤ 0 is higher. In

other words, when complete design �exibility is allowed, it is optimal less often

to completely favor one agent to the exclusion of the other agent. �

Example 2.II (Rationing with costly prizes): Dasgupta and Nti (1998)

consider a symmetric model with n � 2 agents who all assign the same value, v,
to the prize. The designer�s own-use valuation is v0 � 0 but she always bene�ts
from the sum of actions. In the current paper�s terminology, �fig(q; a) =

P
j2N aj,

i 2 N , and �;(q; a) = v0 +
P

j2N aj. This setup is isomorphic to Example 2.I,

when m = 1 and C(1) = v0.

Dasgupta and Nti (1998) model the possibility of rationing by adopting (18)

and allowing z > 0. Here, � = 0 is optimal. Hence, they derive the optimal (b; z)

combination and conclude that z = 0 when v0 is su¢ ciently small. That is, the

prize should never be withheld if the designer�s own-use value is low enough.

However, Proposition 3 and Example 2.I imply that rationing is always part
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of the fully optimal design. Indeed, this conclusion holds for any (G1; :::; Gn) as

long as the MLRP and the CDFC are satis�ed. �

Example 3 (Head starts and Handicaps in AIM contests): An active

literature relies on (18) to derive optimal head starts and handicaps, usually with

the assumption that z = 0. To facilitate comparison with the previous results,

consider an n = 2 agent contest with fi(ai) = �ia
ri
i , �i > 0, ri 2 (0; 1]. In the

con�nes of (18), Fu and Wu (2020) show that individual actions are maximized

by perfectly levelling the playing �eld such that each agent wins with probability

0.5.22 Since individual actions are maximized, this design is optimal whenever

the designer�s expected utility is strictly increasing in actions. In the ensuing

equilibrium, ai = rivi
4
, i = 1; 2, and a1 + a2 = 1+k

4k
r2v2, where k = r2v2

r1v1
is de�ned

as before. Incidentally, note that the same outcome is obtained in (16) by letting

c = �2
�1
= 1. However, using the optimal design from Proposition 5 yields a1+a2 =

k
k+1
e�

1
k
(k�1)r2v2 by (17). The percentage improvement is increasing in the level

of asymmetry, k, and converges to 4�e
e
�or just above 47% �as k !1. Hence,

using the correct design can lead to a substantial increase in the designer�s payo¤

compared to what is suggested by the existing literature that does not utilize the

microfoundations. Moreover, recall that the discussion after Proposition 6 also

reveals that a perfectly level playing �eld is not optimal. �

6 Discussion

6.1 More groups

The general logic behind optimal contest design remains the same when there

are more than two groups of agents or when identical agents do not have to be

treated symmetrically. However, it is more cumbersome to describe the frontier

of the feasible set. For instance, with 3 groups the �rst group could be induced

to take action as1 and the second to take action a
s
2. The third group can then be

incentivized only by picking among the set of assignments in 
N1;N2(qjas1; as2).23

22For other recent papers in this literature, see Franke (2012), Franke, Leininger, and
Schwartz (2013), and Franke, Leininger, and Wasser (2018).

23With more groups, 
N1;N2
(qjas1; as2) does not take all agents into consideration and it

therefore generally speaking has multiple elements.
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Alternatively, group 1 can be induced to take action as1, while groups 2 and 3

are jointly incentivized by selecting assignments in 
N1(qjas1) that balance incen-
tives between those groups. From the point of view of groups 2 and 3, the design

would look like the design in Proposition 2, except 
 is replaced by 
N1(qjas1).
It is also possible that groups 1 and 2 are incentivized �rst using a design as

in Proposition 2, and that group 3 is then incentivized by selecting more carefully

among the assignments in 
(q;�ja1; a2). Finally, all three groups can jointly be
induced to take intermediate actions by balancing incentives between all three

groups simultaneously. In the latter case, this is achieved by using a design

exactly as in Proposition 2, but with more groups.

In general, then, the agents or groups are assembled into �blocks� that are

then placed in a �queue�. Incentivizing the �rst block cuts down the set of as-

signments from 
 to something like 
N1(qjas1) or 
(q;�ja1; a2). Incentivizing the
second block further narrows down the set of assignments that can subsequently

be used to incentivize the third block, and so on, in a process similar to that

described in the �rst paragraph. If all agents or groups are jointly incentivized,

then the design takes the form in Proposition 2, just with more groups.

It is possible that the process grinds to a halt in the sense that early blocks

narrow down 
 so much that there is no degrees of freedom left to incentivize

later blocks. For instance, assume that there is a single prize and two agents,

m = 1 and n = 2, and that rationing is ruled out, or 
 = ff1g; f2gg. Imagine
that agent 1 is presented with a threshold rule in order to incentivize action a1.

If agent 1 does not meet the threshold, then agent 2 has to be awarded the prize

since rationing is ruled out. Hence, it is impossible to incentive agent 2, and his

best response is a2 = 0. Here, even though rationing is ruled out, agent 1 is

incentivized by the threat that the prize may be given to agent 2.

6.2 Scoring rules, prize splitting, and entry fees

Lazear and Rosen (1981) consider an extension to tournaments in which one agent

is given a head start. See also Fain (2009). In other words, each agent has a linear

scoring rule. However, since likelihood-ratios are rarely linear in qi, this is quite

unlikely to be optimal. Indeed, even in cases where likelihood-ratios are linear,
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the scoring functions are unlikely to have the same slope. In the classic moral

hazard literature, Jewitt (1988) argue that the likelihood-ratio is often concave

in performance. For instance, this is the case in the best-shot model when Hi is

log-concave, which is true of most commonly used distribution functions.

Similarly, Nalebu¤ and Stiglitz (1983) and Imhof and Kräkel (2006) allow

the prize to be split among agents if performances are close. Since this is not a

deterministic assignment rule, such a policy is not optimal in the current setting.

However, this ignores entry fees. Entry fees can be added to the model.

Optimal entry fees are identity-dependent and force the participation constraints

to bind. For AIM contests with a single and common monetary prize of value

v, the size of v can likewise be endogenized. Increasing the prize expands the

feasible set. Given risk neutrality and endogenous entry fees and prizes, the �rst-

best can be achieved in AIM contests. Simply expand the prize or feasible set

enough to implement the �rst-best solution to U0(a)�
P

i2N ai and then extract

all rent via entry fees. However, this may not be feasible outside AIM contests.24

Likewise, there are contests where the prize is not monetary, or homogenous, or

easily adjustable.

6.3 Richer models of stochastic performance

It has been assumed that signals are independent. This assumption is built

into existing microfoundations for the generalized lottery CSF but there is no

conceptual reason to insist on this assumption more generally. However, the

incentive compatibility problem becomes more complicated when correlation is

permitted. This technical issue is left for future research.

Another simplifying assumption is that qi is one-dimensional. In some appli-

cations, it may be more reasonable to assume that qi is a vector. The analysis

leading to Propositions 1�3 still applies, meaning that the optimal assignment

rule keeps the same features. To understand this, note that the likelihood-ratio is

a scalar even if performance is multi-dimensional. Hence, comparing likelihood-

24Consider �!(q;a) = t if ! = ;, �!(q;a) = f(a1) + t � v if ! = f1g and �!(q;a) = t � v
otherwise, where f(�) is a concave production function, t is the total entry fee collected from
agents, and v is the size of the prize. The �rst-best solves f 0(a1) = 1 but it must also involve
Pf1g(q) = 1 for all q. The latter cannot incentivize the former.
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ratios remain key. Checking incentive compatibility of the assignment rule may

be more complicated, however. See Conlon (2009) and Kirkegaard (2017) for

ways of justifying the �rst-order approach with many-dimensional signals. If the

likelihood-ratios are increasing along each performance dimension, then the con-

dition in Proposition 2 is satis�ed on an increasing set, in the sense of Conlon

(2009). If distribution functions satisfy his CISP condition, then the �rst-order

conditions are su¢ cient. See Jung and Kim (2015) for an alternative approach

that is founded more directly on the distribution of the likelihood-ratios.

7 Conclusion

This paper pursues a model of contests that is based on stochastic performance.

Contest design is then a team moral hazard problem in which the assignment

rule is manipulated to incentivize e¤ort. The principles behind optimal design

are remarkably robust to both the designer�s objectives and the distributions of

performance. Consistent with the standard single-agent principal-agent model,

likelihood-ratios play a key role in determining an agent�s compensation or, in

this case, the probability that he wins a prize.

The model provides both practical and conceptual insights. The optimal

design is consistent with guaranteed admissions policies and heterogeneous ad-

mission standards. It endogenizes standards for eligibility and explains why the

number of prizes that are awarded may be stochastic ex ante. Conceptually, the

approach o¤ers an alternative to the literature that is based on manipulating a

black-box CSF. The current approach instead bases design on the observables.

Finally, the stochastic performance setting presents new research questions.

For instance, what is the optimal design of contests with multiple rounds? Or the

optimal design of a contest between teams where only the aggregate performances

of each team is observed? Such questions have been considered in the literature

before but not by starting from the stochastic-performance foundation. Thus,

more research into the full implications of contests with stochastic performance

is needed.
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Appendix A: Omitted proofs

Proof of Proposition 1. The proof characterizes the set of implementable

ai and proves the assertion in Proposition 1. Let bqi(ai) denote the unique value
of qi for which Li(qijai) = 0. Now �x some target action, ati, that the designer

may wish to implement. As explained at the beginning of Section 3.1, when

evaluated at ai = ati (3) is maximized with a threshold assignment rule that has

the property that

Pi(qi;q�i) =

(
1 if qi � bqi(ati)
0 otherwise

(19)

The threshold rule in (19) is useful because by construction it maximizes the �rst

derivative in (3) when evaluated at ai = ati. Hence, if the threshold rule leads

(3) to take a negative value, then there is no assignment rule that can feasible

satisfy the �rst-order condition. Then, the target action ati simply cannot be

implemented. Hence, it is necessary for implementability that (3) is non-negative

at ati when the threshold rule is used. This is a su¢ cient condition as well. To

see this, consider a threshold rule with threshold qi = qi. Then, the agent never

wins, regardless of his performance. Hence, (3) is strictly negative at ai = ati.

By continuity, there must then exist some threshold between q
i
and bqi(ati) for

which (3) is exactly zero when evaluated at ai = ati. Since this threshold rule is

monotonic, the agent�s expected utility is concave by the CDFC and the �rst-

order condition is thus su¢ cient.

More precisely, given (19), agent i�s expected utility from some action ai is

vi(1�Gi(bqi(ati)jai))� ai: (20)

Hence, following the above argument, ati is implementable if and only if

�@Gi(bqi(ati)jai)
@ai jai=ati

� 1

vi
: (21)

The MLRP implies that the left-hand side is strictly positive.

Moreover, the Pi(qi;q�i) function that implements ai is (essentially) unique

if and only if (21) is binding. First, Pi(qi;q�i) is not unique when (21) is slack.
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It has already been established that there is a threshold rule that implements

such an ai. However, by similar reasoning, there is another threshold rule with

threshold above bqi(ati) that satis�es the �rst-order condition. For any action for
which (21) binds, the assignment rule is essentially unique in its description of

Pi(qi;q�i) because the threshold rule maximizes (3). Thus, any assignment rule

that di¤ers on a set of performances pro�les of positive measure would fail to

satisfy the agent�s �rst-order condition. This last part proves the proposition.

Proof of Proposition 2. The task is to identify action pro�les that are group-

symmetric and on the frontier of the feasible set. The corners are by de�nition

where agents in group i take action asi and agents in group j take action a
s
j, i 6= j,

and i; j = 1; 2. This proposition describes the rest of the frontier. Here, both

groups must take actions strictly higher than asi , i = 1; 2. Otherwise, the other

group j can be induced to take action asj, but this describes either a corner (if

ai = a
s
i ) or a point on the boundary that is not on the frontier (if ai < a

s
i ). Hence,

the action in group i is in (asi ; a
s
i ), i = 1; 2. Since actions are interior, incentive

compatibility necessitates that the agents��rst-order conditions are satis�ed. The

idea is to use the �rst-order approach by assuming (and then verifying) that the

�rst-order conditions are also su¢ cient.

Ignoring group-symmetry to start, any action pro�le a = (aj; a�j) that is on

the frontier must have the property that aj is maximized given a�j. For a �xed

j and a�j, the assignment rule must therefore solve

max
aj ;fP!(q)g!2
;q2Q

aj (22)

st
@Ui(ai; a�ijP)

@ai
= 0, for all i 2 N

P!(q) � 0, for all q 2 Q and all ! 2 
X
!2


P!(q) = 1, for all q 2 Q;

where Q = �i2N [qi; qi]. Combining (1) and (3) means that the �rst set of con-
straints can be writtenZ �X

f!2
ji2!g
P!(q)viLi(qijai)

�Q
k2N gk(qkjak)dq� 1 = 0 for all i 2 N
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or

E
�X

f!2
ji2!g
P!(q)viLi(qijai)ja

�
� 1 = 0:

It is convenient to write the second and third sets of constraints as

P!(q)
Q
k2N gk(qkjak) � 0, for all q 2 Q and all ! 2 
�X

!2

P!(q)� 1

�Q
k2N gk(qkjak) = 0, for all q 2 Q.

Let f�igi2N denote the multipliers to the �rst set of constraints andf�!(q)g!2
; q2Q
and f�(q)gq2Q the multipliers to the second and third set of constraints, respec-
tively. The Lagrangian can then be written as

aj+E

24X
i2N

X
f!2
ji2!g

P!(q)�iviLi(qijai) +
X
!2


�!(q)P!(q) + �(q)

 X
!2


P!(q)� 1
!
ja

35�X
i2N

�i

For a given assignment ! and a given performance pro�le q, the �rst-order

condition with respect to P!(q) isX
i2!
�iviLi(qijai) + �!(q) = ��(q);

where the right hand side is independent of !. Hence, �!(q) is smallest for

the assignment ! which maximizes the �rst term on the left hand side. Since

�!(q) � 0, this means that �!(q) > 0 for all ! that do not maximize this �rst

term. Thus, P!(q) = 0 for such assignments. Hence, feasibility dictates thatX
!2
(q;�ja)

P!(q) = 1

where


(q;�ja) = f! 2 
j
X

i2!
�iviLi(qijai) �

X
i2!0

�iviLi(qijai) for all !0 2 
g:

Next, it is necessary to sign f�igi2N . To begin, since agent i is incentivized
to take a positive action he must win a prize with strictly positive probability.

Then, it is easy to rule out that �i < 0. In this case, by the MLRP, agent i�s
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score diminishes when qi increases, meaning that any assignment ! that he is a

member of gets a lower aggregate score. Thus, any such assignment is less likely

to be implemented. Stated di¤erently, Pi(qi;q�i) is decreasing in qi if �i < 0.

This violates the incentive constraint in the maximization problem as the agent

then has an incentive to deviate downwards. Hence, �i � 0. The di¢ culty is

in ruling out that �i = 0. To this end, it is useful to consider the �rst-order

condition for aj in (22), which is

1 +
P

i2N �i
@2Ui(ai; a�ijP)

@ai@aj
= 0: (23)

It follows that �i cannot be zero for all i 2 N . In other words, there is some agent
i 2 N with �i > 0. The aim is to show that �i > 0 for all i 2 N , or to rule out
that �i = 0 for any i 2 N . Now, there is a problem like (22) for any j 2 N . The
equilibrium assignment rule must solve all these problems, or the action pro�le

would not be on the frontier. Thus, regardless of which j 2 N is considered in

(22), the same �i multipliers must solve the problem. By extension, (23) holds

for all j 2 N .
Now assume by contradiction that �j = 0 for some agent j 2 N . Consider

how this latter agent j interacts with any agent i for which �i > 0. Since

�j = 0, agent j�s score is �jvjLj(qjjaj) = 0 regardless of qj. Thus, 
(q;�ja) is
independent of qj. Therefore, qj does not matter from agent i�s point of view

unless possibly if there are distinct assignments ! and !0 in 
(q;�ja) such that
agent i is a member of ! but not !0, in which case the value of qj could be used

as a tie-breaker to determine whether agent i receives a prize or not. However,

this is a probability zero event. The reason is that �i > 0 means that agent i�s

score is strictly increasing in qi. Therefore, given q�i, the aggregate score of any

assignment of which agent i is a member is strictly increasing in qi.

Thus, qj does not impact agent i. A marginal increase in aj changes the

distribution of qj, but this is irrelevant to agent i. Hence, �i
@2Ui(ai;a�ijP)

@ai@aj
= 0 if

�i > 0 and �j = 0. Thus, all the term under the summation sign in (23) are zero,

which means that (23) is violated. It follows that �j > 0 for all j 2 N .
Since the multipliers are positive, any agent obtains a strictly higher score

the higher his performance is, by the MLRP. Thus, the probability that he is
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assigned a prize increases. In other words, Pi(qi;q�i) is monotonic in qi and the

CDFC now implies that the agent�s problem is concave. Hence, the �rst-order

condition is su¢ cient. That is, the �rst-order approach is valid.

Thus far, group symmetry has not been invoked. Hence, the proof demon-

strates a principle that extends to contests with more groups or in which group

symmetry is not imposed. However, as discussed in Section 6.1, there are other

complications in that case. Thus, the remainder of the proof makes use of the

assumption that there are exactly two groups and that group symmetry is im-

posed. Assume that agents in group 1 must all be induced to take the same

action, a1. This means that two distinct member of group 1 must have multipli-

ers that take the same value. Otherwise, the agent with the higher �i wins more

often when his likelihood-ratio is positive and less often when his likelihood-ratio

is negative than the agent with the lower multiplier does. However, this means

that the former has stronger incentives than the latter on the margin, starting at

the common action a1. This violates the incentive constraint of at least one of

the agents. Therefore, the multipliers must be group symmetric.

Proof of Proposition 3. The proof follows the same steps as the proof of

Proposition 2, but modi�ed to account for the designer�s more general preferences.

Given assignment rule P and action pro�le a, the designer�s expected utility is

U�(ajP) = E[
X

!2

�!(q; a)P!(q)ja]

= U0(a) + E[
X

!2

�!(a)P!(q)ja]

= E[
X

!2

(U0(a) + �!(a))P!(q)ja];

where U0(a) is again the expected value of �(q; a) and where the last equality

follows from the fact that probabilities sum to one for all performance pro�les.

The objective is to maximize U�(ajP) subject to the same feasibility constraints
as in the proof of Proposition 2. The same arguments then establish that the

score of any assignment is

�!(q; a) +
X

i2!
�iviLi(qijai);
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but since �(q; a) cancel out, scores can instead be computed as

�!(a) +
X

i2!
�iviLi(qijai):

The optimal assignment rule must assign probability one among the assignments

with the highest scores. This produces the rule in Proposition 3.

To sign the multipliers, consider the �rst-order condition for aj in the maxi-

mization problem,

@U�(ajP�)
@aj

+
P

i2N �i
@2Ui(ai; a�ijP�)

@ai@aj
= 0; (24)

where P� is an optimal assignment rule. The �rst step is to show that @U�(ajP
�)

@aj
>

0 if �j = 0. To this end, assume that �j = 0 and note that qj as a consequence

does not impact the score of any assignment. Thus, let 
q�j denote the set of

assignments with the highest scores, given q�j. This may have several elements,

but even in this case the value of �!(a) is the same for all ! 2 
q�j for almost
all q�j.25 Now write U�(ajP�) as

U�(ajP�) =
Z �Z X

!2
q�j
(U0(a) + �!(a))P

�
!(q)gj(qjjaj)dqj

�Y
i6=j
gi(qijai)dq�j:

Then, @U�(ajP
�)

@aj
is determined by the derivative of the inner integral, which for a

�xed q�j isZ �X
!2
q�j

@ (U0(a) + �!(a))

@aj
P �!(q)gj(qjjaj)dqj

�
+

Z �X
!2
q�j

(U0(a) + �!(a))P
�
!(q)Lj(qjjaj)gj(qjjaj)dqj

�
By assumption, aj > 0. This necessitates that agent j has a strictly positive

probability of winning under P�. Hence, the �rst line is strictly positive for a set

25For example, if �i = 0 and ai = a for all agents, then any assignment that allocates
all prizes yields the same score and the same value of �!(a) if �!(a) =

P
i2! ai. However,

more generally, two assignments ! and !0 with �!(a) 6= �!0(a) obtain the same score only ifP
i2! �iviLi(qijai) �

P
i2!0 �iviLi(qijai) = �!0(a) � �!(a) 6= 0, which occurs with probability

zero.
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of q�j of positive measure, by (6). Turning to the second line, for almost all q�j,

the value of U0(a)+�!(a) across 
q�j is, as explained above, unique. Hence, the

fact that a change in aj changes the distribution of qj and with it potentially the

choice of assignment in 
q�j has no impact almost always. Hence, the expectation

of the �rst line is strictly positive, while the expectation of the second line is zero.

Therefore, @U�(ajP
�)

@aj
> 0 if �j = 0. Thus, the �rst term in (24) is strictly positive

and the same arguments as in the proof of Proposition 2 can then be used again

to complete the proof of Proposition 3.

Proof of Proposition 4. This is a corollary of the more general results in

Appendix B, speci�cally Corollary 1, Proposition 10, and Proposition 13.

Proof of Proposition 5. From (16),

a1 + a2 = r1v1F

�
1

c

�
+ r2v2F (c):

Hence, it is possible to view the problem of maximizing a1+a2 as a maximization

problem in c. By assumption, r2v2 � r1v1. Hence, maximization requires that

F (c) � F
�
1
c

�
. Since F (c) is strictly increasing, this means that c � 1. Regardless

of r, the �rst-order condition to this maximization problem implies that

k =
F 0
�
1
c

�
c2F 0(c)

;

where k = r2v2
r1v1

� 1 is exogenous. Given c � 1, it can be veri�ed that the right-
hand side simpli�es to exactly c. Hence, c = k � 1 is necessary. Using this and
the de�nition of k in (16) yields (a1; a2) as stated in the proposition. Then, (17)

follows.

Proof of Proposition 6. This follows from Proposition 9 and Proposition 12

in Appendix B when the CSFs are evaluated at a = a�.

Proof of Proposition 7. Agent i�s �nal score is below si if and only if both

sBi and s
AUX
i are below si. First, sBi � si when qi � H�1 �sbii �, the probability

of which is H(qi)fi(ai) = s
bifi(ai)
i . Second, the probability that sAUXi � si is s

�i
i .

Hence, the probability that the �nal score is below si is s
bifi(ai)
i s�ii = s

bifi(ai)+�i
i . It
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is as if agent i draws bifi(ai) + �i �ideas�from a uniform distribution. Similarly,

the designer draws z �ideas� from a uniform distribution. Since each �idea� is

equally likely to be the best, the ex ante probability that agent i wins is (18).
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Appendix B: Best-shot vs. exponential-noise

This appendix studies the best-shot and exponential-noise models with one prize

in more detail. In the best-shot model, it is possible to handle more agents and

more general impact functions.

The best-shot model

Section 6.1 noted the complications that may arise in contests with many agents.

Essentially, the frontier of the feasible set has many �parts.�To illustrate, the

�rst results focus on the special case where all agents are in one large �block.�

Then, the assignment rule is described as in Proposition 2, but allowing for more

agents. That is, agent i earns a score of �iviLi(qijai) and the agent with the
highest score wins. Since there is only one block, �i 2 (0;1) for all i 2 N . Using
the notation from Section 5.1, this means that � i 2 (0;1). From (13), � i is in

a sense a measure of how favorable the contest is to agent i, as demonstrated in

the following result.

Proposition 8 Consider the best-shot model with f 0j(aj) > 0 � f 00j (aj) for all

j 2 N . Fix an action pro�le a� on the frontier of the feasible set in which all
agents are active and in the same block. Then, agent i�s ex ante equilibrium

winning probability exceeds that of agent j if and only if � i > � j.

Proof. Note that if agents i and j perform equally well given what is expected

of them � i.e. they perform at the same quantiles, or Gi(qija�i ) = Gj(qjja�j) �
then agent i�s score beats agent j�s score if � i > � j and the likelihood-ratios are

positive. However, agent�s j�s score is higher if the likelihood-ratios are negative.

Consequently, the result is trivial if rationing is allowed. Then, only positive

likelihood-ratios have a chance of winning. Recall that agents i and j have positive

likelihood-ratios with the same probability, speci�cally 1 � e�1. Given a perfor-
mance at any �xed quantile above e�1, such that Gi(qija�i ) = Gj(qjja�j) � e�1,

agent i outscores agent j if and only if � i > � j. Since quantiles are distributed

the same way (uniformly) for both agents, it now follows that agent i wins with

a higher probability in equilibrium if and only if � i > � j.
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If rationing is ruled out, then performance with negative likelihood-ratio come

into play. Given � i, agent i�s score is in equilibrium distributed according to

Ki(sij� i) = e
si
�i
�1
; si 2 (�1; � i]

with density

ki(sij� i) =
1

� i
e
si
�i
�1
; si 2 (�1; � i]:

Without loss of generality, arrange agents in ascending order based on their � i,

with � 1 � � 2 � :::�N . Let � 0 = �1. A score above � j automatically beats agent
j. Hence, agent i�s equilibrium winning probability can then be written as

P �i (� 1; � 2; :::; �N) =

Z �1

�0

�Q
j�1;j 6=iKj(sj� j)

�
ki(sj� i)ds

+

Z �2

�1

�Q
j�2;j 6=iKj(sj� j)

�
ki(sj� i)ds

+:::+

Z � i

� i�1

�Q
j�i;j 6=iKj(sj� j)

�
ki(sj� i)ds

=
1

� i

iX
m=1

�m;

where

�m =

Z �m

�m�1

e
P
j�m

�
s
�j
�1
�
ds

=
1P

j�m
1
�j

 
e
P
j�m

�
�m
�j
�1
�
� e

P
j�m

�
�m�1
�j

�1
�!

:

Going forward, for i = 2; :::; n, it is useful to compare

�i =
1P
j�i

1
�j

 
e
P
j�i

�
�i
�j
�1
�
� e

P
j�i

�
�i�1
�j

�1
�!
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and

i�1X
m=1

�m �
Z � i�1

�0

e
P
j�i�1

�
s
�j
�1
�
ds:

=
1P

j�i�1
1
�j

e
P
j�i�1

�
�i�1
�j

�1
�

=
1P

j�i�1
1
�j

e
P
j�i

�
�i�1
�j

�1
�
:

Then, note that for i = 2; :::; n,

P �i � P �i�1 =
1

� i

iX
m=1

�m �
1

� i�1

i�1X
m=1

�m

=
1

� i
�i �

�
1

� i�1
� 1

� i

� i�1X
m=1

�m

� 1

� i

1P
j�i

1
�j

 
e
P
j�i

�
�i
�j
�1
�
� e

P
j�i

�
�i�1
�j

�1
�!

�
�
1

� i�1
� 1

� i

�
1P

j�i�1
1
�j

e
P
j�i

�
�i�1
�j

�1
�
;

and where, de�ning xi =
P

j�i
1
�j
, the latter is proportional to

�i = (1 + � i�1xi) (e
� ixi � e� i�1xi)� (� i � � i�1)xie� i�1xi

= (1 + � i�1xi) e
� ixi � (1 + � ixi) e� i�1xi > 0

when � i > � i�1. Hence, it now follows that winning probabilities are arranged in

the same order as the � i�s.

Given a vector � that lists all � i�s, it is in principle possible to derive the CSF

�the probability that agent i wins for any given action pro�le a �by integrating

out the uncertainty over performance, i.e. by calculatingZ �Z
Pi(qi;q�i)gi(qijai)dqi

�Y
j 6=i

gj(qjjaj)dq�i:
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In the best-shot model, however, a more direct argument is also possible. This

is illustrated in the proof of the next proposition, under the assumption that

rationing is ruled out and that all agents are active. In this case, negative scores

have a chance of winning.

Proposition 9 Under the assumptions in Proposition 8, if a� is the equilibrium
action pro�le and � i � � j for all j 2 N , then agent i wins with probability

bpi(aj� ) =
0@Q

j2Nnfig e
(�i��j)fj(aj)

�jfj(a
�
j
)

1A fi(ai)
� ifi(a�i )P
j2N

fj(aj)

�jfj(a�j )

; (25)

for any action pro�le a with ai > 0.

Proof. To start, note that the distribution of agent i�s score is

Si(sjai) =
�
es�� i

� fi(ai)

�ifi(a
�
i
) ; s 2 (�1; � i]

when he takes action ai rather than a�i . It is as if he draws
fi(ai)
� ifi(a�i )

scores from the

distribution es�� i, but only the best score is counted. The range of scores depends

on the identity of the agent, with � i describing the highest possible score that

agent i can achieve. Assume agent i is the agent with the lowest � , or � i � � j.
Then, in order for agent i to win it is necessary that all other agents score below

� i, the probability of which is0@Q
j2Nnfig e

(�i��j)fj(aj)
�jfj(a

�
j
)

1A : (26)

Given this event, however, the conditional distribution of agent j�s score is

Sj(sjaj)
Sj(� ijaj)

=
�
es�� i

� fj(aj)

�jfj(a
�
j
) ; s 2 (�1; � i]:

Hence, it is as if all agents draw scores from the same distribution, es�� i. Since

each draw therefore has an equal chance of winning, the conditional probability
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that agent i wins is
fi(ai)
� ifi(a�i )P
j2N

fj(aj)

�jfj(a�j )

: (27)

Combining (26) and (26) yields the CSF in the proposition.

As a consistency check, note that if � i = � j for all j 2 N then bpi(a�j� ) = 1
n

and all agents win with equal probability in equilibrium. Note that the �rst term

in (25) depends on the action pro�le, for reasons that are carefully explained in

the proof of the proposition. Due to this distortion, (25) is not a lottery CSF

(except in the special case where � i = � j for all j 2 N).
The highest possible implementable action of agent i, ai, can be characterized

succinctly in the best-shot model. This follows from the proof of Proposition 1.

Corollary 1 Assume Gi takes the form in (9) with fi(0) = 0 and f 0i(�) > 0 �
f 00i (�). Then, any action no greater than the unique solution ai to

fi(ai)

f 0i(ai)
=
vi
e

(28)

can be implemented by appropriately designing the assignment rule.

Proof. In the best-shot model, where bqi(ati) = H�1
�
e
� 1

fi(a
t
i
)

�
or H(bqi(ai)) =

e
� 1

fi(a
t
i
) , (20) is

U i(ai) = vi

�
1� e

� fi(ai)

fi(a
t
i
)

�
� ai

and (21) simpli�es to
f 0i(a

t
i)

fi(ati)
� e

vi
:

By concavity, the left hand side is decreasing. Hence, the condition is satis�ed if

and only ati is no greater than the solution to (15). By Proposition 1, it is then

possible to implement the action.

The assumption that fi(0) = 0 ensures that (15) has a solution.26 In the n = 2

agent case, it is possible to characterize the frontier of the feasible set explicitly.

26In contrast, if fi(0)f 0(0) is large relative to vi, then the agent�s productivity at ai = 0 is already
large relative to his marginal productivity and to his valuation of the prize. In this case, it is
impossible to incentivize the agent to actively participate.
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Consider the case where rationing is ruled out �rst.

Proposition 10 Consider the two-agent best-shot model with fi(0) = 0, f 0i(ai) >
0 � f 00i (ai). When rationing is ruled out, the frontier of the feasible set contains
the corners (a1; 0) and (0; a2). Any interior action pro�le a� = (a�1; a

�
2) is on the

frontier if and only if

f1(a
�
1)

f 01(a
�
1)
= v1F

�
1

c

�
and

f2(a
�
2)

f 02(a
�
2)
= v2F (c) (29)

for some c 2 (0;1), where c = �2
�1
and

F (c) =

(
c

(1+c)2
ec�1 if c 2 (0; 1)

c2+c�1
(1+c)2

e
1�c
c if c � 1

:

Here, F (c) is strictly increasing in c and satis�es F (1) = 1
4
. Hence, a�2 is increas-

ing in c and a�1 is decreasing in c.

Proof. Maximal actions were described in Corollary 1. To implement ai using
the threshold rule, the prize is dumped with agent j when agent i does not meet

his threshold. Hence, agent j cannot in�uence the assignment and aj = 0 is

therefore the best response. The corner solutions are essentially obtained by

letting � 1 = 0 or � 2 = 0. Thus, consider in the following � 1; � 2 > 0.

For interior actions and a �xed � = (� 1; � 2), the two �rst-order conditions

must be solved. Assume that � i � � j. Then, regardless of his performance,

agent i wins with a probability strictly less than one when � i < � j. He wins if

si(qi) � sj(qj), which occurs if and only if qi and qj are such that

e
�i��j
�j Gi(qija�i )

�i
�j � Gj(qjja�j);

where the term on the right hand side is the equilibrium distribution of j�s per-

formance. Hence, the interim probability that agent i with performance qi wins

is e
�i��j
�j Gi(qija�i )

�i
�j . With this in mind, agent i�s �rst-order condition can be

written Z qi

q
i

viLi(qija�i )
�
e
�i��j
�j Gi(qija�i )

�i
�j

�
gi(qija�i )dqi � 1 = 0
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or Z qi

q
i

� i
�i
(1 + lnGi(qija�i ))

�
e
�i��j
�j Gi(qija�i )

�i
�j

�
gi(qija�i )dqi � 1 = 0:

Substituting the equilibrium quantiles of agent i�s performance, z = Gi(qija�i )
and dz = gi(qija�i )dqi, yields

1 =
� i
�i
e
�i��j
�j

Z 1

0

(1 + ln z) z
�i
�j dz

= vi
f 0i(a

�
i )

fi(a�i )
e
�i
�j
�1

� i
�j�

� i
�j
+ 1
�2 ;

which by concavity of fi(ai) nails down a�i .

Assume now that � i > � j. In this case, agent i wins with probability one if

his performance is high enough, or speci�cally if qi � eqi where
e
�i��j
�j Gi(eqija�i ) �i�j = 1;

which implies that

Gi(eqija�i ) = e �j��i�i

and

1 + lnGi(eqija�i ) = � j
� i
:

Agent i�s �rst order condition is now

Z eqi
q
i

viLi(qija�i )
�
e
�i��j
�j Gi(qija�i )

�i
�j

�
gi(qija�i )dqi

+

Z qi

eqi viLi(qija
�
i )gi(qija�i )dqi � 1 = 0:

The same substitution as before yields

1 = e
�i��j
�j

Z e

�j��i
�i

0

� i
�i
(1 + ln z) z

�i
�j dz +

Z 1

e

�j��i
�i

� i
�i
(1 + ln z) dz
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or

1 = vi
f 0i(a

�
i )

fi(a�i )
e

1
�i=�j

�1

�
�i
�j

�2
+
�i
�j
�1�

� i
�j
+ 1
�2 :

As before, a�i is nailed down by concavity of fi(ai).

Now let j = 1 and i = 2. The �rst-order condition for agent 2 can be written

as
f2(a

�
2)

f 02(a
�
2)
= v2F (c)

where c = �2
�1
and

F (c) =

(
c

(1+c)2
ec�1 if c 2 (0; 1)

c2+c�1
(1+c)2

e
1�c
c if c � 1

:

Since �1
�2
= 1

c
, it likewise follows that

f1(a
�
1)

f 01(a
�
1)
= v1F

�
1

c

�
:

Simple di¤erentiation shows that F (c) is strictly increasing and it is easy to verify

that F (1) = 1
4
. The last part of the proposition then follows immediately.

The frontier of the feasible set is described in a similar fashion when rationing

is allowed.

Proposition 11 Consider the two-agent best-shot model with fi(0) = 0, f 0i(ai) >
0 � f 00i (ai). When rationing is allowed, the frontier of the feasible set contains

the corners (a1; a2) and (a1; a2), where ai and ai solve

fi(ai)

f 0i(ai)
=
vi
e
and

fi(ai)

f 0i(ai)
=
vi
e2
; i = 1; 2:

Any interior action pro�le a� = (a�1; a
�
2) is on the frontier if and only if

f1(a
�
1)

f 01(a
�
1)
= v1FR

�
1

c

�
and

f2(a
�
2)

f 02(a
�
2)
= v2FR(c)
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for some c 2 (0;1), where c = �2
�1
and

FR(c) =

8<:
cec�1+e�2

(1+c)2
if c 2 (0; 1)

(c2+c�1)e
1�c
c +e�2

(1+c)2
if c � 1

:

Here, F (c) is strictly increasing in c and satis�es F (1) = 1
4
. Hence, a�2 is increas-

ing in c and a�1 is decreasing in c.

Proof. For c 2 (0;1), the proof follows the same steps as in the proof of
Proposition 10. The only di¤erence is that agent i now has zero probability

of winning if qi < bqi(a�i ) or, using the same substitution as in Proposition 10,
if z � Gi(bqi(a�i )ja�i ) = e�1. Hence, the lower bounds on the integral that are

evaluated in the proof of Proposition 10 change. This produces FR(c) as stated

in the last part of the proposition.

Finally, ai can be obtained by letting c! 0. Alternatively, the logic in Corol-

lary 1 can be applied, but with the change that agent i wins only if qi � bqi(a�i )
and his rival fails to meet his threshold, bqj(a�j), which occurs with probability
e�1. It is for this reason that the right hand side in the equation for ai is e

�1

times its counterpart for ai, where ai is described in Corollary 1.

The only di¤erence between F (c) and FR(c) is the presence of the e�2 term

in the latter. Thus, FR(c) > F (c). Since fi(ai) is concave, it follows, as expected,

that the action pro�le for any given c is higher when rationing is allowed than

when it is not.

Proposition 5 in the main text established that when (12) holds, the design

that maximizes a1+ a2 without rationing involves �2�1 =
r2v2
r1v1

(or c = k). This also

turns out to be optimal when rationing is permitted. The proof of this follows

the same steps as in the proof of Proposition 5 and is thus omitted.

To illustrate, assume that v1 = 1, v2 = 2, and r1 = r2 = 1. Figure 1

describes the frontier of the feasible set without rationing (the thin curve) and

with rationing (the thick curve), respectively. The solid dot in the �gure indicates

the action pro�le that is implemented when �2
�1
= 1. Then, the playing �eld is

made level and both agents win with probability 0.5. Clearly, this point is not on

a tangent line to a level curve for a1 + a2. Hence, this is not an optimal design if
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the objective is to maximize total e¤ort. The open circles describe the optimal

action pro�les when rationing is or is not allowed.27

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

agent 2

agent 1

Figure 1: Comparing feasible sets and optimal action pro�les.

Exponential noise

The exponential-noise model does not satisfy the CDFC. Thus, it is unclear at the

outset whether �rst-order conditions are su¢ cient. This complication is ignored

to start. Later, further restrictions on fi(ai) will be imposed that ensure that the

�rst-order conditions are in fact su¢ cient.

The counterpart to Propositions 8 and 9 is given next.

Proposition 12 Consider the exponential-noise model with n = 2 agents and

assume the �rst-order conditions are su¢ cient for incentive compatibility. For

any action pro�le a� along the frontier of the feasible set, agent i wins with a

smaller probability than agent j if rationing is ruled out and � i > � j but the

opposite holds if rationing is permitted. If � i � � j and rationing is ruled out,

27Without rationing, a1 = 2
9e
� 1
2 = 0:13478 is optimal. In comparison, a1 =

1
e2 = 0:13534.

Hence, the former is marginally below the latter even though this is hard to see in the �gure.
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then agent i wins with probability

bpi(aj� ) = e �j��i�i

fi(a
�
i )

fi(ai)

� ifi(ai)
fi(a�i )

� ifi(ai)
fi(a�i )

+
�jfj(aj)

fj(a�j )

: (30)

for any action pro�le a with ai > 0.

Proof. Consider �rst an action pro�le along the frontier of the feasible set when
rationing is permitted. Here, only positive likelihood-ratios have a chance of

winning. From (14), the two agents are equally likely to have positive likelihood-

ratios. For a �xed quantile, Gi(qija�i ) = Gj(qjja�j), with a positive likelihood-ratio,
agent i obtains a higher score than agent j since � i � � j. Hence, for any quantile,
agent i is at least as likely to win as agent j. Hence, agent i is at least as likely

as agent j to win ex ante.

Assume next that rationing is ruled out. Note that the probability that the

likelihood-ratio is negative is substantial � it is 1 � e�1 = 0:632 �and that in

these cases agent i is hurt when � i � � j. The distribution of agent i�s score is

Si(sjai) = 1� e�
s+�i
�i

fi(a
�
i )

fi(ai) ; s 2 [�� i;1)

when he takes action ai rather than a�i . Assume now that � i � � j, which means
that agent i has the lowest minimum score, or �� i � �� j. Then, agent i has a
chance of winning only if his score is greater than �� j, the probability of which
is

1� Si(�� jjai) = e
�j��i
�i

fi(a
�
i )

fi(ai) : (31)

Conditional on agent i�s score being at least �� j, the probability that his score
is at least s is

1� Si(sjai)
1� Si(�� jjai)

= e
� s+�j

�i

fi(a
�
i )

fi(ai) ;

which means that the conditional hazard rate is 1
� i

fi(a
�
i )

fi(ai)
. Similarly, the hazard

rate for agent j is 1
�j

fj(a
�
j )

fj(aj)
. The de�ning characteristics here is that these hazard

rates are constant for all s � �� j.
Since there is only one competing agent, agent i wins if he is not the agent with

the lowest score. Let the lowest score be denoted s0 and assume that s0 � �� j.
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Conditional on this s0 value, agent i is thus the winner if it is agent j that obtained

the score s0. Based on the hazard rates, this occurs with conditional probability

1
�j

fj(a
�
j )

fj(aj)

1
� i

fi(a�i )
fi(ai)

+ 1
�j

fj(a�j )

fj(aj)

=

� ifi(ai)
fi(a�i )

� ifi(ai)
fi(a�i )

+
�jfj(aj)

fj(a�j )

(32)

regardless of the exact value of s0. Combining (31) and (32) gives (11). At a = a�,bpi(a�j� ) = e �j��i�i
� i

� i+�j
. This is strictly smaller than 1

2
when � i > � j.

Note that bpi(aj� ) is not concave in ai when � i > � j. It is for this reason that
it is harder to check whether �rst-order conditions are su¢ cient or not. However,

when they are su¢ cient, the implementable action pro�les when rationing is ruled

out are the same in the exponential noise model as in the best-shot model with

n = 2. The proof of the �rst part of the next result is instructive in explaining

why this is. The second part provides a condition under which the �rst-order

conditions are su¢ cient.

Proposition 13 Consider the exponential-noise model with n = 2 agents and

assume that rationing is ruled out. If the �rst-order conditions are su¢ cient, then

the frontier of the feasible set is described as in (29). The �rst-order conditions

are su¢ cient when (12) holds.

Proof. Consider interior action pro�les. Agent i wins if his score, si, exceeds the
score of agent j, sj. At the equilibrium candidate action pro�le a�, this occurs if

qi and qj satisfy

1� e
�i��j
�j (1�Gi(qija�i ))

�i
�j � Gj(qjja�j);

where the term on the right hand side is the �equilibrium�distribution of agent

j�s score. Hence, given qi, agent i wins with probability

maxf0; 1� e
�i��j
�j (1�Gi(qija�i ))

�i
�j g:

Note that if � i < � j then agent i wins with strictly positive probability for all
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qi. In this case, agent i�s �rst order condition at a� can be written asZ qi

q
i

viLi(qija�i )
�
1� e

�i��j
�j (1�Gi(qija�i ))

�i
�j

�
gi(qija�i )dqi � 1 = 0

or

�
Z qi

q
i

� i
�i
(1 + ln (1�Gi(qija�i )))

�
1� e

�i��j
�j (1�Gi(qija�i ))

�i
�j

�
gi(qija�i )dqi�1 = 0:

Substituting the equilibrium �survival quantiles�of agent i�s performance, z =

1�Gi(qija�i ) and dz = �gi(qija�i )dqi, yields

1 =

Z 0

1

� i
�i
(1 + ln z))

�
1� e

�i��j
�j z

�i
�j

�
dz

= �
Z 1

0

� i
�i
(1 + ln z))

�
1� e

�i��j
�j z

�i
�j

�
dz

= �� i
�i

Z 1

0

(1 + ln z)) dz +
� i
�i
e
�i��j
�j

Z 1

0

(1 + ln z)) z
�i
�j dz;

and since the �rst term in exactly zero, this �rst-order condition exactly coincides

with its counterpart in the best-shot model.

Assume now that � i > � j. In this case, agent i wins with probability zero if

his performance is low enough, or speci�cally if qi � bqi where
e
�i��j
�j (1�Gi(bqija�i )) �i�j = 1;

or

1�Gi(bqija�i ) = e �j��i�i

and

1 + ln (1�Gi(bqija�i )) = � j
� i
:

Note how similar these expressions are to their counterparts in the best-shot

model. Since agent i only win when his performance is high enough, his �rst
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order condition isZ qi

bqi viLi(qija
�
i )

�
1� e

�i��j
�j (1�Gi(qija�i ))

�i
�j

�
gi(qija�i )dqi � 1 = 0:

The same substitution as before yields

1 =

Z 0

e

�j��i
�i

� i
�i
(1 + ln z))

�
1� e

�i��j
�j z

�i
�j

�
dz

= �
Z e

�j��i
�i

0

� i
�i
(1 + ln z))

�
1� e

�i��j
�j z

�i
�j

�
dz

= �
Z e

�j��i
�i

0

� i
�i
(1 + ln z)) dz + e

�i��j
�j

Z e

�j��i
�i

0

� i
�i
(1 + ln z)) z

�i
�j dz

=

Z 1

e

�j��i
�i

� i
�i
(1 + ln z) dz + e

�i��j
�j

Z e

�j��i
�i

0

� i
�i
(1 + ln z)) z

�i
�j dz

where the last equality comes from the fact that
R 1
0
(1 + ln z) dz = 0. The �rst-

order condition now takes the exact same form as in the best-shot model. This

proves that the frontier of the feasible set is described as in (29). The corners are

again obtained when � 1 = 0 or � 2 = 0.

Next, note that if � i � � j then the CSF for agent i is described by bpi(aj� )
in (11). This means that bpj(aj� ) = 1 � bpi(aj� ). It is easily veri�ed that this
is concave in aj whenever fj(aj) is concave. Hence, the �rst-order condition is

su¢ cient for agent j under fairly weak conditions. The problem is to verify that

this is also the case for agent i. This is where the functional form in (12) comes

into play. Given (12),

bpi(ai; a�j j� ) = e 1���
�
ai
a�
i

��ri �
�
ai
a�i

�ri
�
�
ai
a�i

�ri
+ 1

;

where � = � i
�j
� 1. Note again that �i is irrelevant. Di¤erentiation and simpli�-

cation shows that the sign of the second derivative of bpi(ai; a�j j� ) with respect to
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ai is determined by the sign of

�(x) = ri(� � 1)2 +
�
1� � + ri � 3ri� + 2ri� 2

�
�x

+
�
1� 2� + 2ri � 2ri� + ri� 2

�
� 2x2 � (1 + ri)� 4x3

where x =
�
ai
a�i

�ri
. Note that this is positive if x is small, but that it must be

negative if x is su¢ ciently large. In other words, bpi(ai; a�j j� ) is convex when ai is
small and concave when it is large.

Comparing the second and third coe¢ cient, note that

�
1� � + ri � 3ri� + 2ri� 2

�
�
�
1� 2� + 2ri � 2ri� + ri� 2

�
= �(1�ri)+

�
� 2 � 1

�
ri > 0

for all � > 1 and all r 2 (0; 1]. This means that if the second coe¢ cient is negative
then the third coe¢ cient must be negative as well. Thus, the four coe¢ cients

change signs exactly one. By Descartes�rule of sign, there is therefore exactly one

positive root. Thus, the second derivative of bpi(ai; a�j j� ) changes sign exactly once.
It now follows that bpi(ai; a�j j� ) is �rst-convex-then-concave in ai. At ai = a�i , or
x = 1,

�(1) = ri + � (1� ri)� 2� 3 � � 4 < 1 + � � 2� 3 � � 4 � 0:

Thus, payo¤ is locally concave at a�i . By the �rst-convex-then-concave shape of

payo¤, the only deviation from a�i that has to be ruled out is the deviation to

ai = 0. At ai = 0, the probability of winning is zero, and payo¤ is therefore zero.

Hence, there is no incentive to deviate from a�i if a
�
i gives non-negative expected

payo¤.

From (29) or (16), a�i = riviF (�) = rivi
�2+��1
(1+�)2

e
1��
� , and expected payo¤ is

then

vibp�i (ai; a�j j� ) = vie
1��
�

�

� + 1
� rivi

� 2 + � � 1
(1 + �)2

e
1��
�

= vie
1��
�

�
�

� + 1
� ri

� 2 + � � 1
(1 + �)2

�
= vie

1��
�
� (1 + �) (1� ri) + ri

(� + 1)2
> 0;
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which con�rms that there is no incentive to deviate from a�i to ai = 0. Thus, a
�
i

is the unique best response for agent i. This con�rms that a� is an equilibrium

action pro�le given � .
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