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Abstract

This paper studies optimal contest design in contests with noisy per-

formance. Here, contest design is a team moral hazard problem that endo-

genizes the assignment rule that maps performance pro�les into winning

probabilities. The optimal design features endogenous standards for el-

igibility and the number of prizes that are awarded may be stochastic.

Generally, one group of agents is identi�ed as ��rst claimants� of prizes,

contingent on performance exceeding a threshold of excellence. However,

which group wins prizes more often depends on the designer�s objective

function and the performance technologies. Finally, the approach derives

endogenous, microfounded, and fully optimal contest success functions.
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1 Introduction

A broad range of economic interactions are contest-like in nature. For the pur-

poses of this paper, think of a contest as an environment in which rival agents take

costly actions that in�uence the probability with which one of a number of �xed

and identical prizes is won. Examples include rent-seeking, lobbying, college ad-

mission, innovation contests, promotion contests, sports, etc. The winners need

not necessarily be the agents who took the most costly actions. In fact, actions

are not even directly observable in most contests. Instead, prizes are typically

awarded on the basis of some noisy signal, often interpretable as performance.

It is often natural to assume that prizes must be awarded to the agents with

the �best�performance. There are several design issues in such unbiased contests,

many of which have been explored elsewhere.1 This paper in contrast considers

the diametrically opposite case in which there is no obligation to award the prizes

to the agents with the best signals. Utilizing a general and unifying model of

contests, the paper thus concentrates on the optimal design of biased contests.

Depending on the application, this may be implemented as preferential treatment,

a¢ rmative action, nepotism, or the like.

Consider a college admissions problem. Here, the student�s high school GPA is

observed. It is not uncommon in the US to di¤erentiate between in-state and out-

of-state students. For instance, in the UC system, an applicant from California

who graduates in the top 9% of his high school cohort is guaranteed admission

into one of the UC campuses. This guarantee is not extended to out-of-state

students.2 Similarly, many countries distinguish between domestic and foreign

workers on the labor market. For instance, Canadian universities are obligated

to hire a Canadian applicant if one exists that meets the bar. A foreign applicant

can be hired only if no Canadian candidate meets the bar. In some countries, vet-

erans are given similar preference. Finally, ethnic minorities are awarded bonus

points in the very important National College Entrance Examination in China.

1Design issues include questions concerning what the optimal set of contestants is and how
they are selected, entry fees, number and distribution of prizes, etc. For these and related
questions, see e.g. Taylor (1995), Fullerton and McAfee (1999), Moldovanu and Sela (2001),
Che and Gale (2003), Drugov and Ryvkin (2020), and Fang, Noe, and Strack (2020).

2Compare the in-state and out-of-state instructions (accessed October 6, 2020) at
https://admission.universityofcalifornia.edu/admission-requirements/freshman-requirements/.
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In principle, a high performing minority student can outscore even perfectly per-

forming majority students. In all these examples, a member of the advantaged

group does not have to worry about competition from outside his group, provided

his own performance is high enough.

Another property of these examples is that agents must meet certain mini-

mum requirements to have a chance of winning a prize. These �standards for

eligibility�are part of the design, and are thus endogenous. Existing models typ-

ically abstract away from this design element but the current model is well suited

to exploring the issue. This is pertinent in many kinds of contests and is relevant

even if agents are symmetric ex ante. Consider research contests. The Ansari X

Prize required a crewed spacecraft to be used twice in two weeks to enter space,

a requirement that is clearly endogenous. In some contests, the requirements are

very stringent indeed, and the prize may or may not be awarded as a result. Che

and Gale (2003) mention the longitude rewards o¤ered by the British government

in 1714. These were predated by rewards o¤ered by Spain and the Netherlands

that were never awarded. The locomotive engine contest described by Che and

Gale (2003) drew ten entrants but only one was able to complete the trial suc-

cessfully. Similarly, in some promotion contests, it may happen that no agent is

promoted if they all perform terribly. Finally, the standards for eligibility need

not be symmetric. For instance, the entry requirements are more stringent for

out-of-state students in the UC system.

The current paper views contests primarily as incentive schemes. Thus, con-

test design is intended to manipulated actions. In the model, the highest equi-

librium actions are obtained with contest designs that have features like those

mentioned in the previous two paragraphs. Thus, these features can be justi�ed

even without appealing to distributional considerations.

The following simple model is proposed. First, actions are not directly ob-

servable but a noisy and observable signal is produced by each agent. Typically,

the noisy signal, qi, can be thought of as the stochastic quality of agent i�s per-

formance. In a promotion contest among salespeople, a salesman�s performance

is his volume of sales. In innovation contests, a �rm�s performance is the quality

of its innovation. In a competition for a merit-based scholarship or a seat at

college, a student�s performance includes his GPA to date. Similarly, a lobbyist�s
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performance is how compelling he can make his agenda or proposal sound. The

agent�s action, ai, impacts the distribution, Gi(qijai), of his performance.3

The stochastic performance model nests popular models of contests. In Lazear

and Rosen�s (1981) rank-order tournament, the action shifts the location of the

distribution function. Similarly, there are speci�cations of Gi(qijai) for which
the probability that agent i delivers the best performance exactly reduces to the

lottery contest success function (CSF). Fullerton and McAfee�s (1999) research

tournament with a single prize is one such example.4 Stated di¤erently, Fuller-

ton and McAfee (1999) provide microfoundations for the unbiased lottery CSF.

However, no microfoundations have been o¤ered for the biased lottery CSF that

is often used in the literature. The resulting analysis can be criticized as being

ad hoc or poorly founded. The current paper instead provides an internally con-

sistent treatment of the optimal design of contests. Thus, the new approach has

both methodological and practical implications.

The central idea is to view the problem as a kind of contracting or team

moral hazard problem, with the distributions Gi(qijai) as the primitives. Instead
of o¤ering wage schedules as in Holmström (1982), it is winning probabilities

that are manipulated to incentivize e¤ort. The designer�s task is to construct

and commit to an optimal �assignment rule�that maps performance pro�les into

winning probabilities, while keeping incentive compatibility constraints in mind.

The �rst part of the paper establishes that the general design principles are

the same for a wide range of objective functions. The optimal assignment rule can

be implemented by endowing each agent with a scoring function that is increasing

but typically non-linear in performance. The higher the agent�s score, the more

likely it is that he wins a prize. Scoring rules are calibrated to provide the right

incentives and may be identity-dependent.

3Recently, Bastani, Giebe, and Gürtler (2021) have independently proposed a similar model.
However, their focus is on comparative statics in unbiased contests with a single prize. See also
Ryvkin and Drugov (2020) and Drugov and Ryvkin (2020).

4For other justi�cations in this vein, see Hirschleifer and Riley (1992), Clark and Riis
(1996), Baye and Hoppe (2003), and Jia (2008). Skapardas (1996) and Clark and Riis (1998)
instead take an axiomatic approach to justifying the lottery CSF. Corchón and Dahm (2011)
consider a designer who cannot commit but who is not an expected utility maximizer. These
microfoundations are in�uential and emphasized in e.g. the surveys by Konrad (2009), Vojnoníc
(2015), Corchón and Serena (2018), and Fu and Wu (2019). For other surveys on biased contest
design, see Mealem and Nitzan (2016) and Chowdhury, Esteve-González, and Mukherjee (2019).
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Agents�likelihood-ratios play a key role in providing incentives because op-

timal scoring rules turn out to be piece-wise linear in likelihood-ratios. This

is consistent with insights from the standard principal-agent model where the

likelihood-ratio can be thought of as the incentive weight of any give wage. Neg-

ative likelihood-ratios should be punished if at all possible, which is where ra-

tioning comes in. Rationing is implemented by imposing endogenous standards

for eligibility. These standards may or may not be met in equilibrium, which

means that the number of prizes that are awarded is stochastic. Similarly, very

large likelihood-ratios should be rewarded if at all possible, which is where poli-

cies like guaranteed admission and preferential hiring enter the picture. In fact,

it is a robust feature of optimal contest design that a group of agents is singled

out as ��rst claimants�of prizes. These agents are guaranteed to outscore agents

outside their group as long as their performance exceeds a threshold of excellence.

These design principles are common to a host of objective functions and dis-

tribution functions. However, the details �in terms of which agents are enticed

to work harder and which agents receive steeper scoring rules �are sensitive to

the objective function. If the designer thinks of agents�actions as highly com-

plementary, then a more balanced action pro�le is induced. When rationing is

possible, this unambiguously leads to preferential treatment of �weaker�agents

who end up being over-represented among the eventual winners. For instance,

consider a government that thinks of e¤ort in high-school as a predictor of future

success and uses the rules that governs entry into college to incentivize such e¤ort.

If the government has Rawlsian (or maximin) preferences, the weaker group is

given preferential treatment even though the government is not concerned about

agents�identities per se. On the other hand, if actions are close to perfect sub-

stitutes, the designer may focus her attention on incentivizing �stronger�agents.

The second part of the paper explores these issues in more detail when Gi(qijai)
takes the form in Fullerton and McAfee (1999).

Section 2 describes the model. Section 3 analyzes environments in which the

contest is used exclusively as an incentive device. Section 4 considers more subtle

objective functions, where the designer cares about more than just equilibrium

actions. Section 5 examines design in the Fullerton and McAfee (1999) model in

detail. Section 6 discusses implications and extensions, and Section 7 concludes.
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2 Contests with stochastic performance

This section lays out the basic model and formulates the design problem.

2.1 Contest primitives

There is a �xed set N = f1; :::; ng of risk neutral contestants or agents. Agent i
takes costly action ai 2 R+. The cost function is ci(ai), with c(0) = 0, c0i(ai) > 0,
and c00i (ai) � 0. The action can typically be interpreted as e¤ort and it in�uences
the distribution of the agent�s signal or performance, qi. The distribution function

is written Gi(qijai). This is atomless whenever ai > 0, in which case it has density
gi(qijai) > 0 and support [q

i
; qi], which may or may not be bounded above or

below. Note that the support is the same for all strictly positive actions. If

ai = 0, the possibility that the distribution is degenerate at qi = q
i
is allowed.

Given actions, agents�signals are statistically independent.

The designer can award up to m identical and indivisible prizes, with n >

m � 1. Agent i assigns value vi > 0 to winning a prize. Each agent can win

at most one prize and the value of losing is zero. There is no entry fee and

the outside option is worth zero. Thus, the participation constraint is trivially

satis�ed because ai = 0 guarantees non-negative payo¤.

2.2 Assignment rules and the moral hazard problem

Let 
 denote the collection of all permissible sets of winners, and let ! denote

an element of 
. Thus, ! describes an assignment of prizes. Two cases are

considered. In the �rst, the designer is forced to award all prizes and any ! 2 

must have precisely m (distinct) members. In the second case, the designer has

complete freedom to decide how many of the m prizes to allocate. Thus, the only

restriction is that ! 2 
 has at most m members. These are the �no rationing�

and �rationing�cases, respectively. Extensions are discussed in Section 6.

A contest elicits e¤ort from agents. Hence, designing a contest is at heart a

moral hazard problem. Thus, familiar logic can be applied. First, it is assumed

that the entire performance pro�le is observed. A biased contest is then one in

which the winners are not necessarily the agents with the highest performance.
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Let P!(q) denote the probability that the group ! 2 
 wins, given the perfor-
mance pro�le q = (q1; q2; :::; qn). Let P = fP!g!2
 denote the ensuing �assign-
ment rule.�This is the endogenous design instrument. The designer can credibly

and fully commit to any feasible assignment rule. The feasibility constraints are

that P!(q) 2 [0; 1] for all ! 2 
 and that
P

!2
 P!(q) = 1, for all q.

While it is easiest to think of prizes as being identical and indivisible, the

model does permit another interpretation. Let m = 1 denote the size of a per-

fectly divisible prize (e.g. the wage budget) and let 
 = N [ f0g. Then, Pfig(q)
can be interpreted as the share of the prize that agent i receives, with Pf0g(q)

being the share that the designer retains for herself.

With some abuse of notation, the probability that agent i wins a prize, given

q, is

Pi(q) =
X

f!2
ji2!g
P!(q): (1)

Note that di¤erent assignment rules may yield the same reduced winning prob-

ability Pi(q) when there are multiple prizes. Let q�i and a�i denote the perfor-

mance pro�le and action pro�le of agent i�s rivals, respectively. Given a�i, agent

i�s expected utility from action ai is now

Ui(ai; a�ijP) = vi
Z �Z

Pi(qi;q�i)gi(qijai)dqi
�Y
j 6=i

gj(qjjaj)dq�i � ci(ai); (2)

since signals are statistically independent. The factor after vi integrates out the

uncertainty over performance pro�les and expresses the winning probability as a

function only of the action pro�le. In the language of contest theory, this is the

CSF. The CSF is endogenized by manipulating the assignment rule.

For an action pro�le a = (a1; a2; :::; an) to be implementable, it must con-

stitute a Nash equilibrium of the contest game. Attention is restricted to pure

strategy implementation throughout.

2.3 The contest environment

The analysis relies on the standard �rst-order approach, the validity of which

places technical restrictions on Gi(qijai). Thus, assume from now on that actions
are continuous and that gi(qijai) is di¤erentiable with respect to ai when ai > 0.
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The likelihood-ratio,

Li(qijai) =
1

gi(qijai)
@gi(qijai)
@ai

;

plays an important role. Since repeated reference to the likelihood-ratio is nec-

essary, the abbreviation LR will be used in the text. The LR is assumed to be

strictly increasing in qi. This is the monotone likelihood-ratio property (MLRP).

Assumption (MLRP): Li(qijai) is strictly increasing in qi for all ai 2 R++ and
all i 2 N .

The MLRP implies that a higher action makes a lower performance less likely.

In the standard contracting literature, the MLRP ensures that wage schedules

are monotonic in signals. It plays a similar role here, guaranteeing that the

optimal Pi(qi;q�i) is non-decreasing in qi. Rogerson (1985) adds a convexity of

the distribution function condition (CDFC) that assumes that Gi(qijai) is convex
in ai. The CDFC implies that the term in the parenthesis in (2) is concave in ai
for any monotonic Pi(q). Thus, Ui(ai; a�ijP) is concave in ai.

Assumption (CDFC): Gi(qijai) is convex in ai for all qi 2 [qi; qi] and all i 2 N .

3 Assignment independent contests

This section begins the analysis by solving a tractable yet �exible class of contests.

The next section considers a more general contest environment.

3.1 The objective function and the design problem

The designer is endowed with a Bernoulli utility function, �(q; a), which is al-

lowed to depend on the performance pro�le and the action pro�le. The main

restriction is that the designer does not care about the identity of the winners or

the assignment itself. In other words, her preferences are assignment independent.

The designer may care directly about the action pro�le. The most common

assumption in the contest literature is that she wishes to maximize total e¤ort,

or �(q; a) =
P

j2N aj. For instance, ai may capture human-capital accumulation

that is important in the long run, whereas qi is performance in the short run that

is of lesser or no value but is readily observable.
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However, the designer may also care directly about performance. For instance,

consider a contest for one or more promotions among salesmen akin to Lazear

and Rosen (1981). Here, the employer is presumably not directly interested in the

salesmen�s e¤orts but rather in the total volume of sales, or �(q; a) =
P

j2N qj.

The commitment problem is less severe with assignment independent pref-

erences, as the designer has no ex post incentive to deviate from the promised

assignment rule. The designer aims to design the assignment rule P to implement

an action pro�le a that maximizes her expected utility,

U0(a) = E[�(q; a)ja]:

The analysis proceeds under the assumption that U0(a) is monotonic.

Definition (AIM Contests): A contest is said to be Assignment Independent

and Monotonic (AIM) if U0(a) is strictly increasing in ai for all i 2 N .

In any AIM contest, any optimal action pro�le is on the frontier of the set of

implementable or feasible action pro�les. Thus, the incentive compatibility prob-

lem takes centre stage. Therefore, these contests are the ideal starting point for

understanding the incentive problem and how contest design incentivizes agents.

Two central messages emerge. First, for any frontier action there is an es-

sentially unique incentive compatible assignment rule. That is, incentive com-

patibility more or less dictates contest design. However, the designer is left to

decide which exact frontier action to induce. Second, the fundamental structure

of the contest design is the same for all frontier actions. Hence, the principles

underlying contest design is the same in all AIM contests.

3.2 Maximal individual and group e¤ort

To understand incentives, it is useful to start by focusing on one given agent in

isolation. Given (2), the marginal return to a small increase in ai is

@Ui(ai; a�ijP)
@ai

= vi

Z �Z
Pi(qi;q�i)Li(qijai)gi(qijai)dqi

�Y
j 6=i

gj(qjjaj)dq�i�c0i(ai):

(3)
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Since the expected value of Li(qijai) is zero, the MLRP implies that Li(qijai) is
negative for small qi and positive for large qi. It is clear that (3) is maximized if

the prize is assigned to agent i if and only if Li(qijai) is positive. When Li(qijai)
is positive, a marginal increase in ai makes it more likely that a performance close

to qi is realized. There is no better carrot than promising the agent a prize for

such performances and no better stick than to deny him a prize for performances

that become less likely if his action increases. All proofs are in the Appendix.

Proposition 1 Let ai denote the highest action that agent i can be induced to
take. If ai > 0 then there is an essentially unique Pi(qi;q�i) function that induces

ai. This takes the form of a threshold rule,

Pi(qi;q�i) =

(
1 if qi � bqi(ai)
0 otherwise

; (4)

where bqi(ai) denotes the unique value of qi for which Li(qijai) = 0.5
Next, consider a contest with a group of n1 � n agents that are identical to

agent 1. Assume that the designer must treat these agents symmetrically and

must induce them to take the same action. In fact, it turns out that the optimal

way to induce identical actions within the group is to use a symmetric design.

Let as1 � a1 denote the highest implementable symmetric action in the group
and assume that as1 > 0. To induce this action, the same logic as before dictates

that positive LRs should be rewarded if at all possible. However, other agents in

the group may also have positive LRs, and there are only so many prizes to go

around. Thus, arrange the n1 agents in a line from the agent with the highest

LR to the agent with the lowest. If rationing is allowed, then allocate a prize

only to those of the �rst minfn1;mg agents in line that have positive LRs. If
rationing is not allowed, a threat can instead be made to allocate prizes to agents

outside the group. There are n � n1 other agents and m prizes, so the designer

will still have to allocate at least maxf0;m�(n� n1)g prizes to the group. Thus,
it may be necessary to allocate a prize to a group member with a negative LR,

5Here, Pi(qi;q�i) is �essentially unique�because changes on a set of q of measure zero are
irrelevant. The proof of the proposition outlines a method to characterize ai.
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but members are still served in priority of their LR. The formal proof is omitted,

but the argument is the same as in the proof of Theorem 1 in the next section.

This process generally only pins down part of the assignment rule since it does

not specify what to do with prizes that are not allocated to the group in question.

Thus, there is typically still some design freedom to motivate other agents.

3.3 Optimal design with two groups

Assume now that there are exactly two groups. There are n1 contestants that

are identical to agent 1 and n2 that are identical to agent 2, n1 + n2 = n. The

designer is restricted to inducing group-symmetric actions. The frontier of the

feasible set is characterized and interpreted next.

A natural starting point is to identify the �corners�of the feasible set. The

highest action that agents in group 1 can be induced to take is as1. Implementing

this action ties the designer�s hands to use the criteria described after Proposition

1. For agents in group 1, the performance of group 2 is irrelevant. Conversely,

agents in group 2 �ght over the scraps left by group 1. The two groups are essen-

tially considered in sequence. This resembles the preference given to Canadian

candidates on the academic job market, as described in the introduction. An

action pro�le at the corner of the feasible set is optimal if the objective is to

maximize the highest action, or �(q; a) = maxfa1; a2; :::; ang. Note, however,
that this objective function is not strictly monotonic.

Let as2 denote the highest action that agents in group 2 can be induced to

take, given agents in group 1 are induced to take action as1. If rationing is ruled

out, any prizes that remain after group 1 has been served must be awarded to

the agents in group 2 with the highest LRs. If rationing is permitted, then agents

with negative LRs are excluded.

To illustrate, consider the case with a single prize. Then, without rationing,

as2 is smallest when n2 = 1. This is because the only member of group 2 wins

if and only if all other contestants have negative LRs. This is an event that the

agent cannot in�uence, and thus as2 = 0 is the best response. With more members

of group 2, within-group competition can incentivize as2 > 0. In contrast, when

rationing is possible, as2 is largest when n2 = 1. If the prize is not claimed by an

10



agent in group 1, the only agent in group 2 wins if and only if his LR is positive.

This maximizes his incentives. When n2 � 2, competition from other agents

muddle incentives by lowering the probability that he wins if his LR is positive.

Finally, consider the parts of the frontier that are not at the corners. Here,

a1 2 (as1; as1) and a2 2 (as2; as2), where as1 and as2 are de�ned analogously to as2 and
as1, respectively. The design must now balance incentives, and therefore compare

LRs, across groups. To do so, give agent i with performance qi an endogenous

�score�of

si(qi) = �iviLi(qijai);

and prioritize agents in the order of their scores.

Theorem 1 Consider a contest with two groups, and assume that group-symmetric
actions must be implemented. Without rationing, any action pro�le a that is on

the frontier of the feasible set with a1 2 (as1; as1) and a2 2 (as2; as2) is implemented
by assigning prizes to the m agents with the highest scores. With rationing,

prizes are assigned to the agents with the highest positive scores, up to at most

m prizes. In either case, �i 2 (0;1), i 2 N , is endogenously determined and
group-symmetric, and the resulting assignment rule is essentially unique.

As �1
�2
! 1, an agent in group 1 with a positive (negative) LR is more or

less guaranteed to outscore (be outscored by) any agent in group 2. Hence, the

design approaches the design that implements as1. More generally,
�i
�j
is calibrated

to ensure compliance, or incentive compatibility. Hence, �i
�j
is best thought of as

a measure of how strongly the designer pushes agents in group i relative to agents

in group j to work hard. It is thus not necessarily a measure of favoritism. Which

group of agents is favored with higher winning probabilities is more subtle and is

discussed in Section 3.3.3.

Theorem 1 implies that irrespective of the exact form of AIM preferences,

the structure of the optimal contest is remarkably robust. The remainder of this

section �rst highlights and illustrates two speci�c properties of the optimal design.

It then discusses how the designer�s objective function impacts the optimal action

pro�le and the optimal design.
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3.3.1 Rationing and minimum standards for eligibility

When rationing is allowed, agents with negative scores or LRs are disquali�ed. In

other words, bqi(ai) as de�ned in Proposition 1 can be seen as aminimum standard
for eligibility. At a selective college, this is the minimum admission standard. In

a promotion contest, it is the bar that the agent must clear to be considered

for a promotion. In an innovation contest, it is the standard below which the

innovation is deemed unquali�ed for consideration, e.g. a drug that fails clinical

trials. Note that prizes are withheld with positive probability in equilibrium.

Since rationing impacts the design, it is clearly of value to the designer.

The distributions of performance impact the size and stringency of the min-

imum standards and how they depend on actions and compare across groups.

To illustrate, the consequences of a mild regularity condition due to Chade and

Swinkels (2020) are considered. Given that @Gi(qijai)
@ai

is negative as an implication

of the MLRP, their condition, the no-upward-crossing condition (NUC), can be

expressed as the requirement that �@Gi(qijai)
@ai

is log-supermodular in ai and qi.

Proposition 2 If Gi(qijai) satis�es NUC then, along the frontier of the feasible
set, the minimum standard is weakly increasing in the action that agent i is

induced to take. That is, bqi(ai) is weakly increasing in ai.
Thus, if the two groups of agents draw their performance from the same family

of distributions, or Gi(qijai) = G(qijai), i = 1; 2, then the group that faces the

most stringent standard supplies higher e¤ort in equilibrium. However, this need

not be true when distributions are di¤erent across groups. Note also that since

actions move in opposite directions along the frontier of the feasible set, minimum

standards must likewise move in opposite directions when NUC is satis�ed.

Example 1 (Minimum standards for eligibility in two models): Two

models drawn from the classic principal-agent literature are considered. First,

Grossman and Hart (1983) introduce a spanning condition, such that

Gi(qijai) = fi(ai)Hi(qi) + (1� fi(ai))Ki(qi); qi 2 [qi; qi]; (5)

where Hi and Ki are distribution functions with densities hi and ki and where

fi(ai) 2 [0; 1). The MLRP and CDFC are satis�ed if f 0i(a) > 0 � f 00i (ai) and
hi(qi)
ki(qi)
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is strictly increasing. This implies thatHi �rst-order stochastically dominatesKi.

Think of fi(ai) as being the amount of time or resources that the agent devotes

to using the more productive technology Hi. Here, NUC is satis�ed because

ln
�
�@Gi(qijai)

@ai

�
is additively separable in qi and ai. In fact, bqi(ai) is located

where hi(qi)
ki(qi)

= 1. That is, the minimum standard bqi(ai) is independent of ai. This
has several important implications. First, the minimum standard is the same in

all AIM contests. Second, the minimum standard is independent of vi, implying

that if technologies are symmetric across groups then minimum standards are

symmetric across groups even if valuations di¤er. Finally, the agent is more

likely to pass the standard the higher his equilibrium action is.

Second, consider the best-shot model, in which

Gi(qijai) = Hi(qi)fi(ai), qi 2 [qi; qi]; (6)

where Hi(qi) is a distribution function. Thus, Gi(qijai) is the distribution of the
best draw from Hi(qi) �the best-shot �out of a total of fi(ai) � 0 draws. In an
innovation contest, Hi can be interpreted as the distribution of the quality of a

single idea and fi as the number of ideas. The MLRP, CDFC, and NUC all hold

if f 0i(ai) > 0 � f 00i (ai). Rogerson (1985) mentions a special case and Fullerton

and McAfee (1999) likewise rely on a special case. Here, bqi(ai) is determined
where Gi(bqi(ai)jai) = e�1. Thus, the minimum standard is increasing in ai, but

the probability of passing the standard is always the same and equals 1 � e�1.
It follows that how many prizes are allocated has the same distribution in all

AIM contests, regardless of valuations and group di¤erences in Hi and fi. For

instance, the probability that zero prizes is awarded in e�n. �

An unbiased contest with an identity-independent minimum standard is opti-

mal if all agents are symmetric and their actions enter the designer�s utility func-

tion symmetrically. Such a contest induces higher actions than an unbiased con-

test with no minimum standard. It follows that if the contest is perturbed slightly,

such that v1 and v2 are allowed to di¤er slightly, then an identity-independent

minimum-standard remains an improvement over an unbiased contest with no

rationing. Thus, rationing is of value even if the designer is unable to completely

�ne-tune the design by dictating identity-dependent scoring functions.
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3.3.2 Thresholds of excellence and �rst claimants

Recall that if a1 = as1 is induced, then any agent in group 1 is guaranteed to

outscore all agents in group 2 as long as his LR is positive. In other words, an

agent in group 1 whose performance is su¢ ciently high does not have to worry

about competition from outside his group.

Consider next action pro�les away from the corners, as in Theorem 1, but

assume that LRs are bounded above. This assumption holds in the best-shot

model, and typically also in any model where performance is bounded above.

Then, the maximum scores s1(q1) and s2(q2) in Theorem 1 are �nite. More to

the point, the maximum scores are also generically distinct since it would be

entirely coincidental if �1 and �2 happen to equate s1(q1) and s2(q2). To �x

ideas, imagine that s1(q1) > s2(q2). Then, an agent in group 1 with su¢ ciently

high performance is guaranteed to outscore all agents in group 2. In short, the

design once again features a threshold of excellence above which members of

group 1 cannot lose to a member of group 2. An agent in group 1 who passes

the threshold of excellence is guaranteed a prize if n1 � m. If n1 > m, the agent
may lose but only if he is outscored by su¢ ciently many agents in his own group.

Thus, the design is close to the kind of guaranteed admission that is sometimes

given to the best in-state students. It is as if agents in group 1 who passed the

threshold are ��rst claimants�of prizes. Other agents receive a prize only if there

are prizes left over once the �rst claimants are served.

Which group is promised the status of �rst claimants depends on which action

pro�le the designer is seeking to implement. If an action pro�le near (as1; a
s
2) is

implemented, then �1
�2
is very large and s1(q1) > s2(q2). Intuitively, the prospect

of passing a threshold of excellence and being insulated from competition from

the other group is an e¤ective incentive device. Formally, the reason is that this is

the best way of rewarding large LRs. However, the optimal action pro�le depends

on the designer�s objective function, as discussed next.

3.3.3 Objective functions and favoritism

This subsection illustrates how the optimal action pro�le depends on the de-

signer�s objective function by considering two extreme examples. These exam-
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ples also demonstrate that which group of agents is �favored� depends on the

distributions of performance and in particular on the magnitude of bqi(ai).
It has already been observed that if the objective is to maximize the highest

action, or �(q; a) = maxfa1; a2; :::; ang, then it is optimal to induce an action
pro�le at the corner of the feasible set. When actions as1 and a

s
2 are induced,

members of group 1 are �rst claimants. Even though this may appear to place

group 1 in an advantageous position, its members in fact need not win more often

or be better o¤ than agents in group 2.

Example 2 (Incentives versus outcomes): There is a single prize and

two agents with the same valuation. Rationing is ruled out. When (a1; a2) =

(as1; a
s
2) = (a1; 0) is induced, agents 1 and 2 win with probability 1�G1(bq1(a1)ja1)

and G1(bq1(a1)ja1), respectively. Thus, agent 2 wins most often if G1(bq1(a1)ja1) >
1
2
. This necessitates that bq1 is above the median performance, but nothing pre-
cludes this from happening. In this case, agent 2 is also better o¤, since he incurs

lower e¤ort costs. Agents who exert higher e¤ort need not have higher winning

probabilities because incentives derive from the action�s marginal impact on the

expected winning probability, not on the level of the winning probability itself.

The optimal design manipulates the former with no regard to the latter.

As an example, assume that vi = 1 and ci(ai) = ai, i = 1; 2. Then, only

actions below 1 can be rationalized. Thus, for ai 2 [0; 1), assume that

Gi(qijai) =
p
aiq

4
i + (1�

p
ai) qi; qi 2 [0; 1] : (7)

This is a special case of (5). The MLRP and the CDFC are satis�ed. Here,

a1 = 0:056 and bqi(a1) = 0:63, while the median performance is 0:61. Agent 1

wins with probability 0:482. �

On the other hand, a more balanced action pro�le is optimal when the designer

considers the agents�actions to be complementary. In the extreme case where

actions are perfect complements, or �(q; a) = minfa1; a2; :::; ang, it is optimal
to induce symmetric actions, or a1 = a2, whenever possible. The next result

describes some of the key characteristics of the optimal design in this case.

Proposition 3 Assume that v1 > v2 and that technologies are symmetric across
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groups, or Gi(qijai) = G(qijai) and ci(ai) = c(ai), i = 1; 2. If an action pro�le

with a2 = a1 is on the frontier of the feasible set, then it is implemented with

�2v2 > �1v1. If rationing is allowed, then any member of group 2 wins with a

higher probability than any member of group 1.

Agents with lower valuation need a stronger push to work as hard as agents

with higher valuations, which is why �2v2 > �1v1 in Proposition 3. This increases

the score of an agent in group 2 if his LR is positive, but decreases it if his LR is

negative. Thus, without rationing, these confounding e¤ects mean that he may or

may not win more often. However, only the �rst e¤ect is relevant when rationing

is possible. Then, winning probabilities are unambiguously higher for agents in

group 2. Thus, contests with rationing give �cleaner�predictions.

To prove that either group may win more often without rationing, consider

a two-agent/one-prize contest with symmetric technologies. A conceptual trick

from Jung and Kim (2015) is employed. They suggest transforming the problem

in such a way that the distribution of the LR is thought of as the primitive of

the problem. Thus, let GL(Lijai) denote the identity-independent distribution of
the LR and gL(Lijai) its density, i = 1; 2.

Corollary 1 Assume that n1 = n2 = m = 1, technologies are symmetric across

groups, and that rationing is ruled out. If v1 > v2 and an action pro�le with

a2 = a1 = a
� on the frontier of the feasible set is implemented, then agent 2 wins

more (less) often than agent 1 if GL(Lja�) is convex (concave) in L.

It can be veri�ed that GL(�ja�) is convex in the best-shot model. However, it is
possible to construct examples where it is concave in the spanning model. Thus,

which agent wins more often is sensitive to the model. With reference to Example

2, recall that Li(bqi(a�)ja�) = 0 is the mean of GL(�ja�), and that the median is
above (below) the mean when GL(�ja�) is convex (concave). For instance, bqi(ai)
is below the median in the best-shot model, where Gi(bqi(ai)jai) = e�1 � 0:368.
Proposition 3 implies that s2(q2) > s1(q1) when technologies are symmetric

and a1 = a2. Thus, the �weaker� agents in group 2 are made �rst claimants.

Similarly, when rationing is permitted, the minimum standard is the same across

groups. The reason is that bq1(a1) = bq2(a2) since a1 = a2 and technologies are
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symmetric. However, since agents in the weaker group receive more generous

scores whenever they pass the minimum standard, they have higher winning

probabilities and therefore tend to be over-represented among the winners.

However, heterogenous minimum standards can be explained if technologies

are asymmetric, even when a1 = a2. For instance, consider the best-shot model

but assume that group 2 is less productive than group 1, with H1(q) � H2(q) for
all q and/or f1(a) � f2(a) for all a. Then, group 2 will face a lower minimum

standard than group 1 if the two are induced to take similar actions. This is

consistent with lowering admission standards for disadvantaged applicants.

The action pro�le in Proposition 3 is close to optimal when actions are close

to perfect complements. On the other hand, agents with higher valuations are

easier to incentivize, and so it is intuitive that if actions are closer to perfect

substitutes then the optimal design will be geared more towards incentivizing the

strong group of agents. Section 5 considers this in detail in the best-shot model.

4 Costly and separable contests

The assignment rule is dictated by the agents�incentive compatibility constraints

when an action pro�le on the frontier is implemented. This lack of �exibility may

prove costly to the designer if her preferences are not assignment independent. In

principle, it may be better to induce an action pro�le that is not on the frontier

of the feasible set. These actions can be induced in many ways, meaning that the

assignment rule can now better re�ect the designer�s objectives.

Thus, the designer�s Bernoulli utility is now allowed to depend on the assign-

ment and it is therefore written �!(q; a) in the event that the assignment is !.

This is assumed to be separable in the sense that it takes the form

�!(q; a) = �(q; a) + �!(a); ! 2 
: (8)

The new term �!(a) incorporates the designer�s preferences over the assignment.

For example, she may care more about the actions of the winners than the losers,

e.g. �!(a) =
P

i2! ai. Similarly, �!(a) can capture the cost to the designer of

awarding prizes, with �!(a) = �C(j!j), where C is a cost function.
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Preferences are assumed to be monotonic in actions, or

@ (U0(a) + �!(a))

@ai
� 0, 8i 2 N , with @ (U0(a) + �!(a))

@ai
> 0, 8i 2 !; (9)

where U0(a) = E[�(q; a)ja] as before. Thus, for any assignment, the designer is
better o¤ if agents take higher actions.

Definition: A contest is Separable and Monotonic if (8) and (9) hold.

The optimal design is again characterized for contests with two groups of

agents. For brevity, focus is also on contests where any second-best action pro�le

is interior, or ai > 0 for all i 2 N , but not on the frontier of the feasible set. That
is not to say that the second-best action cannot be on the frontier of the feasible

set, but in that case the design must take the form in Theorem 1.

Ideally, the designer would prefer to select an assignment that maximizes

�!(a). Thus, each possible assignment, !, is assigned an aggregate score,

s!(q) = �!(a) +
X

i2!
�iviLi(qijai): (10)

The score is a compromise between two considerations. First, �!(a) is relevant

to the designer but it ignores incentive compatibility. The second term is present

to ��x�this problem and ensure incentive compatibility.6,7 The assignment with

the highest score is chosen, and its members receive prizes. Note that the empty

assignment �when no prizes are awarded �is assigned a score of �;(a). Thus,

when rationing is allowed, all prizes are withheld if all other assignments yield

scores below �;(a). AIM contests are special cases, with �!(a) = 0 for all !.

Proposition 4 Consider a Separable and Monotonic contest with two groups,
and assume that group-symmetric actions must be implemented. Assume also

that �!(a) is group-symmetric.8 Any second-best action pro�le a that is interior

6Action pro�les near the frontier presumably have large �i�s. As the �i�s goes to in�nity,
the �!(a) terms lose their signi�cance and the assignment rule converges to that in Theorem
1. Note that the �i�s can explode while their ratios converge to that implied by Theorem 1.

7In a more general model where �! depends on q, the agents��rst-order conditions produce a
similar scoring rule to s!(q), but it is harder to verify that second-order conditions are satis�ed.

8Thus, removing an agent from ! and replacing him with another agent from the same
group and with the same action does not change �!(a).
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and not on the frontier of the feasible set is optimally implemented by choosing

the assignment in 
 with the highest aggregate score, where �i 2 (0;1), i 2 N ,
is endogenously determined and group-symmetric.

Consider a contest with costly prizes and �!(a) = �C(j!j). Here, the aggre-
gate score of assignment ! is s!(q) =

P
i2! �iviLi(qijai) � C(j!j). The highest

scoring assignment can then be found by comparing �marginal revenue� and

�marginal costs�. First, arrange agents in descending order according to their in-

dividual scores, �iviLi(qijai), which now play the role of marginal revenue. Then,
prizes are awarded as long as marginal revenue exceeds the corresponding mar-

ginal cost. Thus, if x prizes have already been awarded, an additional prize should

be handed out if the (x+ 1)st highest individual score exceeds C(x+ 1)�C(x),
where the latter captures marginal costs. Appendix B explores how the optimal

action pro�le depends on costs by focusing on contests with symmetric agents.

The speci�cation in (8) allows the designer to have preferences over the iden-

tity of the winners. A government may desire that the distribution of students

admitted into university re�ects the distribution of various ethnicities in the pop-

ulation. With two sets of agents, N1 and N2, the utility function may then take

the form

�!(q; a) = d (jN1 \ !j; jN2 \ !j) + �
P

i2N ai;

where d(�; �) is a function of how many agents from each group is admitted,

and where � > 0 re�ects how important actions are to the designer. Here, the

aggregate score of any given assignment depends on its composition. Thus, the

winners need not be the agents with the highest individual scores, �iviLi(qijai).
For a �nal example, assume that ci(ai) = ai, i 2 N , and that the designer

cares about both social welfare and total e¤ort, with

�!(q; a) = 

�P

i2! vi �
P

i2N ai
�
+ (1� 
)

P
i2N ai

= 

P

i2! vi + (1� 2
)
P

i2N aj

where 
 2 [0; 1
2
) is the weight given to social welfare. Here, prizes are awarded to

the agents with the highest amended scores, 
vi+�iviLi(qijai). Epstein, Mealem,
and Nitzan (2011) utilize the approach in Section 5.3 to analyze a similar contest.
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5 The best-shot model with a single prize

The analysis has identi�ed general properties of optimal contest design. These

design principles are general in the sense that they are the same for all distribution

functions and for a wide variety of objective functions. This section specializes

the setting to a single-prize contest with best-shot performance technologies, as

in (6). This makes it possible to illustrate the approach and to discuss the role of

the objective function in more detail (Sections 5.1 and 5.2). The best-shot model

is also ideally suited to contrast and compare the paper�s approach to a popular

but less solidly founded approach to contest design (Section 5.3).

Given (6), the �impact function� fi(ai) and the cost function ci(ai) are in-

strumental in determining incentives. Thus, de�ne

ti(ai) = c
0
i(ai)

fi(ai)

f 0i(ai)

as a measure of marginal costs relative to marginal productivity. Intuitively, when

this is small the agent has a greater incentive to increase his action. It turns out

that ti captures everything that is important about the agent�s technology. By

concavity of fi and convexity of ci, ti is a strictly increasing function.

For simplicity, assume that limai!0 ti(ai) = 0. Roughly speaking, this means

that ai = 0 is optimal to the agent only when his action cannot in�uence the

outcome. The condition is satis�ed if fi(0) = 0 and/or c0i(0) = 0.

5.1 Properties of the feasible set

As before, assume that there are two groups and that the designer must use

group-symmetric rules. To start, rationing is ruled out. Assume that the contest

is an AIM contest. Thus, the frontier of the feasible set is of interest. Given an

equilibrium action pro�le a�, agent i�s score in the best-shot model simpli�es to

si(qi) = � i (1 + lnGi(qija�i )) ; (11)

where

� i = �ivi
f 0i(a

�
i )

fi(a�i )
:
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The score of a given performance relies crucially on where it sits in the equilibrium

distribution, Gi(�ja�i ). If � 1 = � 2, then the agent whose performance is at the

highest quantile also obtains the highest score. Thus, in this case, any agent

regardless of group membership is ex ante equally likely to win. If � i > � j, then

si(qi) > sj(qj) and agents in group i are �rst claimants.

With two groups, only the relative sizes of � 1 and � 2 matter. Thus, for any
� i
�j
2 (0;1), it is possible to derive the action pro�le that is being implemented.

Proposition 5 Consider the best-shot model with two groups, group-symmetric
rules, and no rationing. For any action pro�le that is on the frontier of the

feasible set but not at a corner, the equilibrium action of an agent in group i, a�i ,

is determined by �i = � i
�j
2 (0;1), with

ti(a
�
i ) = viF (�ijni; nj) ; (12)

and where

F (�ijni; nj) =

8<: enj(�i�1)
nj�i+ni�1
(nj�i+ni)

2 if �i 2 (0; 1)
ni�1
n2i

+ e
ni

�
1
�i
�1
�
nj
n2i

nj�
2
i+�ini(2�nj)�n2i
(nj�i+ni)

2 if �i � 1
:

Here, F (�ijni; nj) is strictly increasing in �i and satis�es F (1jni; nj) = n�1
n2
.

Hence, a�i is strictly increasing in �i.

The corner actions, asi and a
s
i , can be obtained by letting �i converge to zero

or in�nity, respectively. Away from the corners it holds that �2 = 1
�1
. Hence, for

any �1 2 (0;1), the equilibrium actions are determined by

t1(a
�
1) = v1F (�1jn1; n2) and t2(a�2) = v2F (1=�1jn2; n1):

The frontier of the feasible set can now be traced out by varying the parameter

�1. By Proposition 5, a�1 is increasing in �1 while a
�
2 is decreasing in �1. Note

that the two groups generally speaking do not exert the same e¤ort when �1 = 1.

Example 3 (Linear Technologies): Assume that ci(ai) = fi(ai) = ai, i =

1; 2, in which case ti(ai) = ai. Assume also that v1 = 2; v2 = 1. Figure 1
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Figure 1: The frontier of the feasible set for di¤erent (n1; n2) with n = 2 (black
curve) and n = 4 (red curves), given v1 = 2 and v2 = 1.

illustrates the feasible set and how it varies with n1 and n2. For instance, since

F (1jni; nj) depends only on n, the frontier pivots when n1 and n2 change in
opposite directions to maintain the same n. �

The feasible set in Figure 1 is convex. More generally, this holds whenever t1
and t2 are convex. For example, ti is convex if, as commonly assumed, ci(ai) = a


i
i ,


i � 1, and fi(ai) = �iarii , where �i > 0; ri 2 (0; 1].

Lemma 1 Letting �1 = �1
�2
2 (0;1), the marginal rate of transformation �i.e.

the slope of the frontier of the feasible set �is given by

da�2
da�1

= �t
0
1(a

�
1)

t02(a
�
2)

v2
v1

n1
n2
�1;

The feasible set is a convex set if t1(a1) and t2(a2) are convex functions.

As explained after (11), any agent is equally likely to win if � 1 = � 2, or �1 = 1.

When � 1 increases, the scores of agents in group 1 pivots around zero, increasing

when performance is at a high quantile and decreasing otherwise. The latter is
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less relevant because negative scores are not only less likely, occurring only with

probability e�1, but are also less likely to win in the �rst place. Hence, increases

in � 1 relative to � 2 increases the overall probability that a member of group 1

wins. Recall that if � 1 > � 2, or �1 > 1, then s1(q1) > s2(q2). Thus, agents in the

group that bene�ts from a threshold of excellence are more likely to win ex ante.

Proposition 6 Consider the best-shot model with two groups, group-symmetric
rules, and no rationing. Then, along the frontier of the feasible set, the probability

that a given agent in group i wins is strictly increasing in �i and equals 1n if �i = 1.

If �i � 1, a further increase in �i causes members of group i to pass the threshold
of excellence more often in equilibrium.

Expected utility of agents in group i increases in �i when ni � 2. The higher
winning probability more than compensates for the increased e¤ort cost.9 Thus,

it is natural to think of �i as a measure of how �nice�the designer is to group i.

Corollary 2 Members of group i are better o¤ the higher �i is, whenever ni � 2.

Proposition 6 is silent on who wins ex post for a given performance pro-

�le. This is determined not only by � 1 and � 2, but also by the mappings from

performances to quantiles. These are di¤erent across groups and are functions of

equilibrium actions. Unraveling these relationships leads to the following compar-

ison of scoring functions. The scoring functions capture the overt discrimination

between groups that is visible to an outsider, but note that they may cross in

such a way that no group is given an advantage across all performance levels.

Corollary 3 Assume that v1 > v2 and that technologies are symmetric across

groups, or Hi(qi) = H(qi), fi(ai) = f(ai), and ci(ai) = c(ai), i = 1; 2. If rationing

is ruled out, then there exists a �01 2 (0; 1) such that:

� If �1 2 [�01; 1] then s1(q)�s2(q) is always weakly negative: Members of group
1 score weakly lower than members of group 2 with the same performance.

� If �1 2 (0; �01)[ (1;1) then s1(q)�s2(q) changes sign once: The group that
are �rst claimants are advantaged if performances are high but disadvan-

taged if performances are low.
9In Example 3, expected utility is u-shaped and minimized at �i = 1

nj
� 1 if ni = 1. Again,

ni = 1 is a special case because here agent i does not face any within-group competition.
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5.2 Optimal action pro�les and contest design

This subsection examines how the optimal action pro�le is determined under the

simplifying assumption that technologies are symmetric across groups, implying

that ti(ai) = t(ai), i = 1; 2. This makes it possible to focus on the roles of the

(common) technology and of the designer�s objective function.

Conceptually, the exercise is simple. First, identify the feasible set. Then,

maximize the designer�s utility, U0(a), over the feasible set. If the feasible set is

convex and U0(a) is quasi-concave, then the solution is unique and given by the

familiar tangency condition.10 Such regular environments are considered �rst.

To illustrate, assume that the designer�s objective is to maximize total e¤ort.

Invoking group symmetry, the utility function is then n1a1+n2a2 and the marginal

rate of substitution (MRS) is �n1
n2
. As in Example 3, assume also that t(ai) = ai.

Then, by Lemma 1, the marginal rate of transformation (MRT) is �v2
v1

n1
n2
�1.

Tangency occurs where

�1 =
v1
v2
. (13)

Assuming v1 > v2, the optimal design satis�es �1 > 1. Thus, �stronger�agents

are induced to work harder, but they also bene�t from being �rst claimants and

they win more often.

Moving towards generalizations, three cut-o¤ values of �1 are important. The

�rst is �1 = v1
v2
> 1, as in (13). The second is �1 = 1, above which members

of group 1 are �rst claimants and are more likely to win. The third threshold,

�s1 < 1, is de�ned as the level of �1 that induces symmetric actions, or a
�
1 = a

�
2.

If the asymmetry is very large �with v1 at least four times larger than v2 �then

there are (n1; n2) combinations for which a�1 > a
�
2 for all �1. In this case, de�ne

�s1 = 0. In any case, �s1 is below �
0
1 in Corollary 3. The interval (�

s
1;
v1
v2
) thus

contains all the possible con�gurations of scoring functions in Corollary 3.

In general, the comparison of the MRT and the MRS depends on the technol-

ogy, valuations, and group sizes on the one hand and on the designer�s objective

function on the other. To start, maintain the assumption that the designer seeks

10The slope of the frontier at the corners is 0 or �1, respectively. This is illustrated in
Figure 1 and follows more formally from Lemma 1. Thus, the solution is interior whenever
U0(a) is monotonic and quasi-concave.
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to maximize total e¤ort but allow the technology to take more general forms.

Proposition 7 Assume the designer�s objective is to maximize total e¤ort. As-
sume that v1 > v2 and ti(ai) = t(ai), i = 1; 2, with t(ai) convex. Let ��1 denote

the unique optimal value of �1. Then, ��1 2 (�s1; v1v2 ] and a
�
1 > a

�
2 in equilibrium.

If t(ai) is also log-concave, then ��1 � 1. However, if t(ai) is locally log-convex,
then there are (v1; v2) valuations with v1 > v2 for which ��1 < 1, in which case

any member of group 2 wins more often than any member of group 1.

In Example 3 and in the example prior to Lemma 1, t(ai) is both convex

and log-concave. Log-concavity intuitively rules out that t(ai) is �too convex�.

In comparison, consider a contest where f(a) = a, c0(a) = e
1
2
a2, in which case

t(a) = ae
1
2
a2 is globally convex. However, it is log-concave for a < 1 and log-

convex for a > 1. If v1 > v2 > e�
1
2
n2

n�1 , then the optimal value of �1 is strictly

smaller than 1. Here, marginal costs are �extremely convex,�and it is therefore

hard to entice even agents in group 1 to work hard. It is better to take a more

balanced approach, and induce a reasonable amount of e¤ort from both groups.

Next, consider more general objective functions, but assume that they are

quasiconcave and symmetric in actions. A natural example arises when the de-

signer seeks to maximize expected total production, in which case expected utility

is

U0(a) = n1E[q1ja1] + n2E[q2ja2];

given group symmetry. The CDFC implies that E[qijai] is concave in ai. More-
over, E[qijai] is symmetric since technologies are symmetric across groups.
When the designer�s utility is quasiconcave, she cares less for the relatively

extreme action pro�le that is implemented with �1 = ��1 . A more balanced

action pro�le is preferable, and the optimal �1 moves closer to �s1. Thus, even

if ��1 > 1, the optimal �1 may fall below 1. For instance, this occurs in the

limit case when the designer has CES preferences over a that approach Leontief

preferences, leading the optimal �1 to approach �s1. In other words, the degree

to which actions are substitutes or complements is important in determining the

optimal action pro�le and which group of agents win more often.

Proposition 8 Assume U0(a) is di¤erentiable, monotonic, quasi-concave, and
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symmetric. Assume that v1 > v2 and ti(ai) = t(ai), i = 1; 2, with t(ai) convex.

Let �U1 denote the unique optimal value of �1. Then, �
U
1 2 (�s1; ��1 ] and a�1 > a�2

in equilibrium. Finally, even if ��1 � 1, there are eligible U0(a) for which �U1 < 1.

Example 4 (Objective functions and optimal design): The designer�s

objective is to maximize total production. Assume that Hi(qi) = q


i , qi 2 [0; 1],

with 
 > 0, and that fi(ai) = ci(ai) = ai, i = 1; 2. Then, E[qijai] = 
ai
1+
ai

. An

increase in 
 leads to a concave transformation of E[qijai]. Thus, the designer is
more interested in a balanced action pro�le the higher 
 is, and the optimal design

is therefore sensitive to the properties of Hi(qi).11 It can be veri�ed that �U1 < 1

if and only if v1v2
2 > n4

(n�1)2 . This condition is more easily satis�ed the higher

v1; v2, and 
 are, and the lower n is. Increases in valuations amplify actions and

make it more important to smooth out actions across groups. Conversely, more

agents leads to a more competitive contest, which on its own tends to smooth

out actions across groups when �1 is close to 1. �

Example 5 (Non-convexities): Consider a contest with two completely sym-

metric agents, such that n1 = n2 = 1 and v1 = v2 = v. Assume that fi(ai) = ai
and that

ci(ai) =

(
1
2

 (
 � 1) a2i � a



i if ai 2 [0; 1]

1
2
(
 � 2) (2
ai � 
 + 1) if ai 2 (1;1)

;

for some 
 > 2. The cost function is increasing and convex. The third derivative

is sometimes strictly negative, su¢ ciently so to make ti(ai) �very�concave locally.

It can be shown that for any 
 > 2, there exists a v value for which the feasible

set is non-convex.12 Figure 2 illustrates, assuming 
 = 10 and v = 300. The iso-

pro�t line along which total e¤ort is maximized is also shown. Although agents

are symmetric, treating them asymmetrically increases total e¤ort by about 2.5%.

It follows that if valuations are perturbed slightly, such that v1 6= v2, then

11In contrast, the frontier of the feasible set in Proposition 5 does not depend on H1 and
H2. The designer can always transform qi into the quantile eqi = Hi(qi) and use this as the
basis for contest design. It follows that the set of implementable action pro�les is independent
of H1 and H2. It is for the same reason that it is not required that H1 = H2 in Proposition 5.

12Here, ci, c0i, c
00
i are all continuous. The linear extension for ai � 1 just ensures that ci

is globally increasing. The proof of the assertion relies on the behavior of ci for ai < 1. The
important property is that there are ai < 1 values for which ti is �so concave�that t0i+2tit

00
i < 0.

Then, the MRT is increasing near the point where a1 = a2.
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Figure 2: Non-convex feasible set

favoring the weaker agent lead to higher aggregate e¤ort than levelling the playing

�eld does, even if favoring the strong agent may be even better. Likewise, a small

perturbation of the designer�s preferences may cause a discontinuous change in

the optimal design. �

Finally, it is straightforward to permit rationing. See Appendix C for details.

This causes F (�ijni; nj) to increase and the feasible set to expand. Lemma 1 is
unchanged, which means that the benchmark in (13) is the same as well. Thus,

the main results are robust, although the size of �s1 may change. Given the

conditions in Proposition 8, it remains the case that the strong group of agents

are incentivized to work harder than the weak group, or a�1 > a�2. As noted in

Example 1, this implies that the stronger group faces a more stringent minimum

standard, or bq1(a�1) > bq2(a�2). The most signi�cant qualitative change of allowing
rationing is that Corollary 2 also holds when ni = 1. This is another indication

that the no-rationing case with ni = 1 is a special case.

5.3 Contest success functions

Fullerton and McAfee (1999) work with a specialized version of the best-shot

model, with Hi(qi) = H(qi) for all i 2 N . In words, all ideas are equally good ex
ante but some agents may have more ideas than others. Then, agent i wins an

27



unbiased contest with probability

pi(a) =
fi(ai)Pn
j=1 fj(aj)

; (14)

when
Pn

j=1 fj(aj) > 0. This is intuitive because each idea has an equal chance

of being the best. Hence, the Fullerton and McAfee (1999) model provides a mi-

crofoundation for the unbiased lottery CSF. The question now is how to proceed

to model and analyze biased contests.

The premise of the current paper is that performance is observed and that

this can be used as the basis for contest design. In the best-shot model, � 1
and � 2 determine the equilibrium action pro�le and thus the scoring functions

in (11). With these in hand, the implied CSF can be derived by carrying out

the integration in (2). Appendix C demonstrates that the resulting CSF is not a

lottery CSF �it does not take a simple ratio form as in (14). Thus, even though

the starting point is an unbiased lottery contest, endogenizing the contest design

fundamentally alters the resulting CSF.13

This point clashes with a popular approach in the existing contest literature.

It is common to assume that the designer can implement a CSF that is some

variant of

pi(aj�;b; z) =
bifi(ai) + �iPn

j=1 (bjfj(aj) + �j) + z
: (15)

Here, one or more of � = (�1; :::; �n), b = (b1; :::; bn), and z are considered to

be design instruments. Typically, each variable is restricted to be non-negative.

The interpretation of �i is that it captures agent i�s head start, while bi is a

multiplicative bias or handicap. Thus, it is as if agent i earns bifi(ai)+ �i lottery

tickets. Finally, z can be thought of as the number of lottery tickets that the

designer reserves for herself, thus admitting the possibility of rationing.

It is hard to reconcile (15) with the premise in Fullerton and McAfee (1999)

that the qualities of ideas are stochastic, at least as long as actions are taken to

be unobservable: If actions are unobservable, then how are biases and head starts

13There are also axiomatic justi�cations for the lottery CSF, see Skaperdas (1996) and Clark
and Riis (1998). However, once contest design is endogenized, there appear little reason to think
that the designer will voluntarily limit herself to contests that satisfy nice axioms.
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applied to fi(ai) in order to calculate the new number of lottery tickets?14

Methodologically, the problem is that (15) appears to treat the CSF as the

primitive. However, in Fullerton and McAfee (1999) it is the performance tech-

nology Gi that is the primitive. The CSF is just a reduced form that integrates

out the uncertainty over q.15 Given that the unbiased CSF is obtained from the

stochastic performance premise, internal consistency demands that the stochas-

tic performance premise remains the foundation for biased contests as well. This

leads to the approach taken in this paper.

It is also worth emphasizing how hard it is to draw practical implications

from the biased lottery approach. Again, how should one go about levelling

the playing �eld by ensuring that each agent has an equal number of lottery

tickets when this number is not observable? In other words, it is hard to see

how policy recommendations should be implemented in practice since all results

and predictions relate to something that is unobservable. The approach in the

current paper instead allows the observable variables to take centre stage since

the assignment rule is explicitly based on the observed performance pro�le.

The following example contrasts the two approaches.

Example 6 (Head starts and Handicaps in AIM contests): An active

literature relies on (15) to derive optimal head starts and handicaps, usually with

the assumption that z = 0.16 For concreteness, assume that n = 2 and that

fi(ai) = ci(ai) = ai, i = 1; 2. Using (15), Fu and Wu (2020) show that individual

actions are maximized by perfectly levelling the playing �eld such that each agent

wins with probability 0.5.17 Since individual actions are maximized, this design

14If actions are observable, an auction-like mechanism is likely preferable to a lottery contest.
There is no reason to think that the ad hoc CSF in (15) would be optimal.

15Another way of expressing the problem is that the literature has not provided a micro-
foundation for (15). Appendix C provides such a microfoundation. This is again based on
transforming performance into scores. The transformation in question is ad hoc, but it can be
done. Since the transformation is ad hoc, the resulting assignment rule is suboptimal. Hence,
(15) underestimates the value of optimal contest design. See Example 6.

16Dasgupta and Nti (1998) consider a model with symmetric agents. The designer�s own-use
valuation is v0 � 0 and she bene�ts from total e¤ort. This is equivalent to a contest with a
single prize that is costly to the designer. Dasgupta and Nti (1998) rely on (15) and show that
z = 0 (no rationing) is optimal when v0 is su¢ ciently small. In contrast, Proposition 4 proves
that rationing is always optimal when using the stochastic performance approach.

17For other recent papers in this literature, see Franke (2012), Franke, Leininger, and
Schwartz (2013), and Franke, Leininger, and Wasser (2018).
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is optimal whenever the designer�s preferences are strictly monotonic. In the

ensuing equilibrium, ai = vi
4
, i = 1; 2, and a1 + a2 = v1+v2

4
or a1 + a2 = k+1

4
v2,

where k = v1
v2
> 1 is a measure of the asymmetry. Incidentally, the same outcome

is obtained in Proposition 5 by letting �1 = 1.

However, if the objective is to maximize total e¤ort, (13) establishes that the

optimal design involves �1 = v1
v2
= k, which yields a1 + a2 = k2

k+1
e
1
k
�1v2. The

percentage improvement is increasing in k, and converges to 4�e
e
�or just above

47% �as k ! 1. Hence, using the fully optimal and microfounded design can
lead to a substantial increase in payo¤. Welfare implications are also di¤erent,

as it is no longer optimal to fully level the playing �eld. �

Remark 1 (The exponential noise model): The working paper version,

Kirkegaard (2020), contains a detailed discussion of the exponential noise model

by Hirschleifer and Riley (1992) that also justi�es the lottery CSF when n = 2.

Although the CDFC does not apply, it is con�rmed that the paper�s approach

still works when n = 2 and ci(ai) = fi(ai) = ai, i = 1; 2. Indeed, in this case,

the feasible set exactly coincides with the feasible set of the best-shot model.

The optimal action pro�le in the two models is therefore the same, as long as

U0(a) is the same. However, agent i�s winning probability is decreasing in �i in

the Hirschleifer and Riley (1992) model. Thus, the two models yield the exact

opposite conclusions in terms of which agent wins more often under the optimal

design. This �ts Fu and Lu�s (2012) observation that the exponential noise model

is essentially a �worst-shot�model and therefore in many ways the opposite of

the best-shot model. Indeed, with reference to Corollary 1, GL(Lja) is concave
in L in the exponential noise model, but convex in the best-shot model �

6 Discussion

6.1 Inferences from data

It has been assumed that the designer knows the primitives. If the performance

of a large number of unbiased contests with the same sort of contestants have

been observed, then Gi(qija�i ) can be estimated econometrically even though the
equilibrium action a�i is unknown. However, this is typically not su¢ cient to infer

30



LRs.18 Nevertheless, past contest data may be valuable in some circumstances,

such as when the �parametric family�of the distribution is known.

Example 7 (Inferences in the best-shot model): Consider the best-shot

model with a single prize, but without any prior knowledge about Hi, fi, and ci.

In the unbiased contest, the �rst-order conditions are

vi

Z qi

q
i

Gj(qjja�j)njGi(qija�i )ni�1Li(qija�i )gi(qija�i )dqi � c0i(a�i ) = 0

which in the best-shot model simpli�es to

vi

Z qi

q
i

Gj(qjja�j)njGi(qija�i )ni�1 (1 + lnGi(qija�i )) gi(qija�i )dqi = ti(a�i ):

Assuming vi is known, the left hand side depends only on known or observable

terms. Thus, ti(a�i ) can be inferred. Even though Gi(qija�i ) and ti(a�i ) is only
�local�information (at ai = a�i ), it may still hold value. Assume that Hi, fi, and

ci are heterogenous across two groups but that the prize is a sum of money, v,

that is valued the same across groups. The designer can now lower v while still

maintaining the same e¤ort. The reason is that the original action pro�le is not

on the frontier of the feasible set that is implied by v. By lowering v, the feasible

set shrinks, and the action pro�le is eventually on the frontier. Thus, the same

action pro�le can be implemented by lowering v to bv until the system
t1(a

�
1) = bvF (�1jn1; n2) and t2(a�2) = bvF (1=�1jn2; n1) ;

has a solution for some �1.

Consider next a contest with a non-monetary prize but assume that valuations

are known and that it is known that Hi = H for all i 2 N . Then, information
about fi comes from observed winning frequencies, via (14). If the parametric

forms of ci and fi are also known, then it may be possible to go even further. For

18Even if a�i is observed ex post, this is not of that much value as Gi(qija�i ) is still only a
�point estimate�. Similarly, winning frequencies at a �xed equilibrium action pro�le do not in
general identify the CSF away from the equilibrium action pro�le. Indeed, even if the unbiased
CSF is known, Section 5.3 makes the point that it is unclear how to use this for design purposes.
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instance, assume ci(ai) = ai and fi(ai) = ari , where r 2 (0; 1] is unknown. Since
fi(a

�
i )

fj(a�j )
=
�
a�i
a�j

�r
is known (from winning frequencies) and ti(a

�
i )

tj(a�j )
=

a�i
a�j
is known (from

�rst-order conditions), r can be inferred. Then, a�i and a
�
j follow from the �rst-

order conditions. Knowing fi(ai), it is also possible to infer H from the observed

distribution Gi(qija�i ), and thus construct Gi(qijai) for all ai. The designer now
has all she needs for optimal design. �

6.2 Extensions to the model

It is possible to generalize the model beyond the rationing/no rationing di-

chotomy. Restrictions on 
 may re�ect the designer�s inability to commit to,

or legal roadblocks that preclude, certain assignments. For instance, a law that

a speci�c percentage of prizes must be awarded to women or minorities would

imply that not all constellations of winners are feasible.

In the general case, each feasible assignment, ! 2 
, is evaluated by an

aggregate score, much as in Proposition 4. This may change the assignment even

in AIM contests (Theorem 1), because the assignment that awards prizes to the

agents with the highest individual scores may not be feasible. For details, see the

working paper, Kirkegaard (2020).

The general logic behind optimal contest design remains the same when there

are more than two groups of agents or when identical agents do not have to be

treated symmetrically. However, it is more cumbersome to describe the frontier

of the feasible set. Again, see Kirkegaard (2020) for details.

6.3 Scoring rules, prize splitting, and entry fees

Lazear and Rosen (1981) consider an extension to tournaments in which one

agent is given a head start. See also Fain (2009). Then, each agent has a linear

scoring rule. However, since LRs are rarely linear in qi, this is quite unlikely to

be optimal. Indeed, even when LRs are linear, the scoring functions are unlikely

to have the same slope. Jewitt (1988) argues that the LR is often concave in

performance. This is the case in the best-shot model when Hi is log-concave.

Similarly, Nalebu¤ and Stiglitz (1983) and Imhof and Kräkel (2006) allow

the prize to be split among agents if performances are close. Since this is not a
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deterministic assignment rule, such a policy is not optimal in the current setting.

Finally, entry fees can be added to the model. Optimal entry fees are identity-

dependent and force the participation constraints to bind. For AIM contests

with a single and common monetary prize of value v, the size of v can likewise

be endogenized as in Example 7. Increasing the prize expands the feasible set.

Given quasilinear preferences as well as endogenous entry fees and prizes, the

�rst-best can be achieved in AIM contests. Starting from v = 0, simply expand

the feasible set enough to implement the �rst-best solution to U0(a)�
P

i2N ci(ai)

and then extract all rent via entry fees.

7 Conclusion

This paper pursues a model of contests that is based on stochastic performance.

Contest design is then a team moral hazard problem in which the assignment

rule is manipulated to incentivize e¤ort. The principles behind optimal design

are remarkably robust to both the designer�s objectives and the distributions of

performance. Consistent with the standard single-agent principal-agent model,

likelihood-ratios play a key role in determining an agent�s compensation or, in

this case, the probability that he wins a prize. Nevertheless, the speci�cs of the

optimal design and the induced action pro�le depend on the designer�s objec-

tive function and primitives like the distribution of performance and the cost

functions. For instance, which group of agents is favored with higher winning

probabilities depends on all these factors.

The model provides both practical and conceptual insights. In practical terms,

it endogenizes standards for eligibility and explains why the number of prizes that

are awarded may be stochastic ex ante. Similarly, the optimal design features

a threshold of excellence beyond which advantaged agents are insulated from

competition from other groups. Conceptually, the approach o¤ers an alternative

to the literature that is based on manipulating a black-box CSF. The current

approach instead bases design on observable signals.
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Appendix A: Proofs of main results

Proof of Proposition 1. The proof characterizes the set of implementable

ai and proves the assertion in Proposition 1. Let bqi(ai) denote the unique value
of qi for which Li(qijai) = 0. Now �x some target action, ati, that the designer

may wish to implement. As explained at the beginning of Section 3.2, when

evaluated at ai = ati, (3) is maximized with a threshold assignment rule that has

the property that

Pi(qi;q�i) =

(
1 if qi � bqi(ati)
0 otherwise

(16)

The threshold rule in (16) is useful because by construction it maximizes the �rst

derivative in (3) when evaluated at ai = ati. Hence, if the threshold rule leads

(3) to take a negative value, then there is no assignment rule that can feasible

satisfy the �rst-order condition. Then, the target action ati simply cannot be

implemented. Hence, it is necessary for implementability that (3) is non-negative

at ati when the threshold rule is used. This is a su¢ cient condition as well. To

see this, consider a threshold rule with threshold qi = qi. Then, the agent never

wins, regardless of his performance. Hence, (3) is strictly negative at ai = ati.

By continuity, there must then exist some threshold between q
i
and bqi(ati) for

which (3) is exactly zero when evaluated at ai = ati. Since this threshold rule is

monotonic, the agent�s expected utility is concave by the CDFC and the �rst-

order condition is thus su¢ cient.

More precisely, given (16), agent i�s expected utility from some action ai is

vi(1�Gi(bqi(ati)jai))� ci(ai): (17)

Hence, following the above argument, ati is implementable if and only if

�@Gi(bqi(ati)jai)
@ai jai=ati

� c0i(ai)

vi
: (18)

The MLRP implies that the left-hand side is strictly positive.

Moreover, the Pi(qi;q�i) function that implements ai is (essentially) unique

if and only if (18) is binding. First, Pi(qi;q�i) is not unique when (18) is slack.
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It has already been established that there is a threshold rule that implements

such an ai. However, by similar reasoning, there is another threshold rule with

threshold above bqi(ati) that satis�es the �rst-order condition. For any action for
which (18) binds, the assignment rule is essentially unique in its description of

Pi(qi;q�i) because the threshold rule maximizes (3). Thus, any assignment rule

that di¤ers on a set of performances pro�les of positive measure would fail to

satisfy the agent�s �rst-order condition. This last part proves the proposition.

Proof of Theorem 1. The task is to identify action pro�les that are group-

symmetric and on the frontier of the feasible set. The corners are by de�nition

where agents in group i take action asi and agents in group j take action a
s
j, i 6= j,

and i; j = 1; 2. This proposition describes the rest of the frontier. Here, both

groups must take actions strictly higher than asi , i = 1; 2. Otherwise, the other

group j can be induced to take action asj, but this describes either a corner (if

ai = asi ) or a point on the boundary that is not on the frontier (if ai < asi ).

Hence, the actions of agents in group i is in (asi ; a
s
i ), i = 1; 2. Since actions are

interior, incentive compatibility necessitates that the agents��rst-order conditions

are satis�ed. The idea is to use the �rst-order approach by assuming (and then

verifying) that the �rst-order conditions are also su¢ cient.

Ignoring group-symmetry to start, any action pro�le a = (aj; a�j) that is on

the frontier must have the property that aj is maximized given a�j. For a �xed

j and a�j, the assignment rule must therefore solve

max
aj ;fP!(q)g!2
;q2Q

aj (19)

st
@Ui(ai; a�ijP)

@ai
= 0, for all i 2 N

P!(q) � 0, for all q 2 Q and all ! 2 
X
!2


P!(q) = 1, for all q 2 Q;

where Q = �i2N [qi; qi]. Combining (1) and (3) means that the �rst set of con-
straints can be writtenZ �X

f!2
ji2!g
P!(q)viLi(qijai)

�Q
k2N gk(qkjak)dq� c0i(ai) = 0 for all i 2 N
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or

E
�X

f!2
ji2!g
P!(q)viLi(qijai)ja

�
� c0i(ai) = 0:

It is convenient to write the second and third sets of constraints as

P!(q)
Q
k2N gk(qkjak) � 0, for all q 2 Q and all ! 2 
�X

!2

P!(q)� 1

�Q
k2N gk(qkjak) = 0, for all q 2 Q.

Let f�igi2N denote the multipliers to the �rst set of constraints andf�!(q)g!2
; q2Q
and f�(q)gq2Q the multipliers to the second and third set of constraints, respec-
tively. The Lagrangian can then be written as

aj+E

24X
i2N

X
f!2
ji2!g

P!(q)�iviLi(qijai) +
X
!2


�!(q)P!(q) + �(q)

 X
!2


P!(q)� 1
!
ja

35�X
i2N

�ic
0
i(ai)

For a given assignment ! and a given performance pro�le q, the �rst-order

condition with respect to P!(q) isX
i2!
�iviLi(qijai) + �!(q) = ��(q);

where the right hand side is independent of !. Hence, �!(q) is smallest for

the assignment ! which maximizes the �rst term on the left hand side. Since

�!(q) � 0, this means that �!(q) > 0 for all ! that do not maximize this �rst

term. Thus, P!(q) = 0 for such assignments. Hence, feasibility dictates thatX
!2
(q;�ja)

P!(q) = 1

where


(q;�ja) = f! 2 
j
X

i2!
�iviLi(qijai) �

X
i2!0

�iviLi(qijai) for all !0 2 
g:

This assignment rule is implemented by assigning prizes to the agents with the

highest scores, as described in the statement of the theorem.

Next, it is necessary to sign f�igi2N . To begin, since agent i is incentivized
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to take a positive action he must win a prize with strictly positive probability.

Then, it is easy to rule out that �i < 0. In this case, by the MLRP, agent i�s

score diminishes when qi increases, meaning that any assignment ! that he is a

member of gets a lower aggregate score. Thus, any such assignment is less likely

to be implemented. Stated di¤erently, Pi(qi;q�i) is decreasing in qi if �i < 0.

This violates the incentive constraint in the maximization problem as the agent

then has an incentive to deviate downwards. Hence, �i � 0. The di¢ culty is

in ruling out that �i = 0. To this end, it is useful to consider the �rst-order

condition for aj in (19), which is

1 +
P

i2N �i
@2Ui(ai; a�ijP)

@ai@aj
= 0: (20)

It follows that �i cannot be zero for all i 2 N . In other words, there is some agent
i 2 N with �i > 0. The aim is to show that �i > 0 for all i 2 N , or to rule out
that �i = 0 for any i 2 N . Now, there is a problem like (19) for any j 2 N . The
equilibrium assignment rule must solve all these problems, or the action pro�le

would not be on the frontier. Thus, regardless of which j 2 N is considered in

(19), the same �i multipliers must solve the problem. By extension, (20) holds

for all j 2 N .
Now assume by contradiction that �j = 0 for some agent j 2 N . Consider

how this latter agent j interacts with any agent i for which �i > 0. Since

�j = 0, agent j�s score is �jvjLj(qjjaj) = 0 regardless of qj. Thus, 
(q;�ja) is
independent of qj. Therefore, qj does not matter from agent i�s point of view

unless possibly if there are distinct assignments ! and !0 in 
(q;�ja) such that
agent i is a member of ! but not !0, in which case the value of qj could be used

as a tie-breaker to determine whether agent i receives a prize or not. However,

this is a probability zero event. The reason is that �i > 0 means that agent i�s

score is strictly increasing in qi. Therefore, given q�i, the aggregate score of any

assignment of which agent i is a member is strictly increasing in qi.

Thus, qj does not impact agent i. A marginal increase in aj changes the

distribution of qj, but this is irrelevant to agent i. Hence, �i
@2Ui(ai;a�ijP)

@ai@aj
= 0 if

�i > 0 and �j = 0. Thus, all the terms under the summation sign in (20) are

zero, which means that (20) is violated. It follows that �j > 0 for all j 2 N .
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Since the multipliers are positive, any agent obtains a strictly higher score

the higher his performance is, by the MLRP. Thus, the probability that he is

assigned a prize increases. In other words, Pi(qi;q�i) is monotonic in qi and the

CDFC now implies that the agent�s problem is concave. Hence, the �rst-order

condition is su¢ cient. That is, the �rst-order approach is valid.

Thus far, group symmetry has not been invoked. Hence, the proof demon-

strates a principle that extends to contests with more groups or in which group

symmetry is not imposed. However, as discussed in the working paper version,

Kirkegaard (2020), there are other complications in that case. Thus, the remain-

der of the proof makes use of the assumption that there are exactly two groups

and that group symmetry is imposed. Assume that agents in group 1 must all

be induced to take the same action, a1. This means that two distinct members

of group 1 must have multipliers that take the same value. Otherwise, the agent

with the higher �i wins more often when his likelihood-ratio is positive and less

often when his likelihood-ratio is negative than the agent with the lower mul-

tiplier does. However, this means that the former has stronger incentives than

the latter on the margin, starting at the common action a1. This violates the

incentive constraint of at least one of the agents. Therefore, the multipliers must

be group symmetric.

Proof of Proposition 2. By de�nition of NUC, �@Gi(qijai)
@ai

is log-supermodular

in ai and qi, or
@2

@qi@ai
ln

�
�@Gi(qijai)

@ai

�
� 0

which is equivalent to

@2

@ai

�
@gi(qijai)
@ai

=
@Gi(qijai)
@ai

�
� 0:

Recall that the MLRP implies that @Gi(qijai)
@ai

is negative and that @gi(qijai)
@ai

is neg-

ative when qi is small and positive when qi is large. Thus, the ratio of the two

is �rst positive and then negative as qi increases. The fact that the ratio is in-

creasing in ai then means that it is positive for more qi when ai is higher, or in

other words that @gi(qijai)
@ai

is negative for more qi. Since bqi(ai) is de�ned as the
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performance where @gi(qijai)
@ai

is zero, it follows that it is weakly increasing in ai.

Proof of Proposition 3. Agent i�s �rst-order condition, (3), can be written

more concisely as

viE[Pi(q)Li(qijai)ja]� c0i(ai) = 0:

Since technologies are symmetric and costs are convex, it must hold that

v1E[P1(q)L1(q1ja1)ja] = v2E[P2(q)L2(q2ja2)ja]

whenever a2 = a1 is implemented. Since v1 > v2, this in turn requires that

E[P1(q)L1(q1ja1)ja] < E[P2(q)L2(q2ja2)ja];

If �1v1 = �2v2, then the scoring rule is symmetric and the left and right hand sides

coincide. If �1v1 > �2v2 then P1(q) jumps from zero to one for some performance

pro�les where L1(q1ja1) > 0 and �if rationing is ruled out �from one to zero for

some performance pro�les where L1(q1ja1) < 0. The opposite occurs for agent 2.
Hence, the left hand side increases and the right hand side decreases. In either

case, the required inequality is violated. Thus, �2v2 > �1v1 is optimal.

If rationing is allowed, then Pi(q) = 0 whenever Li(qijai) < 0. Since only

positive likelihood-ratios are ever rewarded, increasing �2v2 above �1v1 then un-

ambiguously implies that agent 2 outscores agent 1 more often. Hence, agent 2

wins more often in expectation than agent 1.

Proof of Corollary 1. If a1 = a2 = a� is induced, then �2v2 > �1v1 from

Proposition 3. Hence, agent 2�s scores have a wider range. Agent 1 wins if and

only if L2 < �L1, where � =
�1v1
�2v2

2 (0; 1). Ex ante, agent 1 then wins with
probability

E[P1(q)ja�] =
Z L1(q1ja�)

L1(q1ja
�)

GL(�Lja�)gL(Lja�)dL;

and agent 2 wins with the remaining probability. Note that if � = 1, then
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E[P1(q)ja�] = 1
2
. The derivative with respect to � is

Z
LgL(�Lja�)gL(Lja�)dL = �

Z  Z L

L1(q1ja
�)

xgL(xja�)dx
!
@gL(�Lja�)

@L
dL;

where integration by parts was used, along with the fact that the LR is zero in

expectation. The latter fact also implies that the inner integral on the right is

negative. Since � < 1, this means that agent 1 wins less often than agent 2 if

GL(Lija�) is convex in Li, but the opposite holds if GL(Lija�) is concave in Li.
This completes the proof.

Proof of Proposition 4. The proof follows the same steps as the proof of

Theorem 1, but modi�ed to account for the designer�s more general preferences.

Given assignment rule P and action pro�le a, the designer�s expected utility is

U�(ajP) = E[
X

!2

�!(q; a)P!(q)ja]

= U0(a) + E[
X

!2

�!(a)P!(q)ja]

= E[
X

!2

(U0(a) + �!(a))P!(q)ja];

where U0(a) is again the expected value of �(q; a) and where the last equality

follows from the fact that probabilities sum to one for all performance pro�les.

The objective is to maximize U�(ajP) subject to the same feasibility constraints
as in the proof of Theorem 1. The same arguments then establish that the score

of any assignment is

�!(q; a) +
X

i2!
�iviLi(qijai);

but since �(q; a) cancel out, scores can instead be computed as

�!(a) +
X

i2!
�iviLi(qijai):

The optimal assignment rule must assign probability one among the assignments

with the highest scores. This produces the rule in Proposition 4.

To sign the multipliers, consider the �rst-order condition for aj in the maxi-
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mization problem,

@U�(ajP�)
@aj

+
P

i2N �i
@2Ui(ai; a�ijP�)

@ai@aj
= 0; (21)

where P� is an optimal assignment rule. The �rst step is to show that @U�(ajP
�)

@aj
>

0 if �j = 0. To this end, assume that �j = 0 and note that qj as a consequence

does not impact the score of any assignment. Thus, let 
q�j denote the set of

assignments with the highest scores, given q�j. This may have several elements,

but even in this case the value of �!(a) is the same for all ! 2 
q�j for almost
all q�j.19 Now write U�(ajP�) as

U�(ajP�) =
Z �Z X

!2
q�j
(U0(a) + �!(a))P

�
!(q)gj(qjjaj)dqj

�Y
i6=j
gi(qijai)dq�j:

Then, @U�(ajP
�)

@aj
is determined by the derivative of the inner integral, which for a

�xed q�j isZ �X
!2
q�j

@ (U0(a) + �!(a))

@aj
P �!(q)gj(qjjaj)dqj

�
+

Z �X
!2
q�j

(U0(a) + �!(a))P
�
!(q)Lj(qjjaj)gj(qjjaj)dqj

�
By assumption, aj > 0. This necessitates that agent j has a strictly positive

probability of winning under P�. Hence, the �rst line is strictly positive for a set

of q�j of positive measure, by (9). Turning to the second line, for almost all q�j,

the value of U0(a)+�!(a) across 
q�j is, as explained above, unique. Hence, the

fact that a change in aj changes the distribution of qj and with it potentially the

choice of assignment in 
q�j has no impact almost always. Hence, the expectation

of the �rst line is strictly positive, while the expectation of the second line is zero.

Therefore, @U�(ajP
�)

@aj
> 0 if �j = 0. Thus, the �rst term in (21) is strictly positive

and the same arguments as in the proof of Theorem 1 can then be used again to

19For example, if �i = 0 and ai = a for all agents, then any assignment that allocates
all prizes yields the same score and the same value of �!(a) if �!(a) =

P
i2! ai. However,

more generally, two assignments ! and !0 with �!(a) 6= �!0(a) obtain the same score only ifP
i2! �iviLi(qijai) �

P
i2!0 �iviLi(qijai) = �!0(a) � �!(a) 6= 0, which occurs with probability

zero.
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complete the proof of Proposition 4.

Proof of Proposition 5. See Proposition 11 in Appendix C. For completeness,

Corollary 5 in Appendix C derives the action pro�les that are at the corners of

the frontier of the feasible set.

Proof of Lemma 1. Given the description of the frontier of the feasible set,

note that

t01(a
�
1)da

�
1 = v1F

0 (�1jn1; n2) d� and t02(a�2)da�2 = v2F 0
�
1

�1
jn2; n1

�
�1
�21
d�:

It follows that the slope of the frontier is

da�2
da�1

= �t
0
1(a

�
1)

t02(a
�
2)

v2
v1

F 0
�
1
�1
jn2; n1

�
1
�21

F 0 (�1jn1; n2)
:

The last factor can be simpli�ed, yielding

da�2
da�1

= �t
0
1(a

�
1)

t02(a
�
2)

v2
v1

n1
n2
�1:

Next, recall that a�1 is increasing in �1 and that a
�
2 is decreasing in �1. It

now follows that as �1 increases, the ratio
t01(a

�
1)

t02(a
�
2)
increases as well whenever t1(a1)

and t2(a2) are convex functions. Hence, the slope decreases and becomes �more

negative�. In other words, the curve that describes the frontier of the feasible set

is concave, as in Figure 1. Hence, the feasible set is convex.

Proof of Proposition 6. It can be shown that an agent in group i wins with

probability

W (�ijni; nj) =

8<: enj(�i�1) 1
nj�i+ni

if �i 2 (0; 1)
1
ni

�
1� njeni

�
1
�i
�1
�

�i
nj�i+ni

�
if �i � 1

along the frontier of the feasible set. There are a few ways of proving this, so here

one is chosen that highlights an interesting feature of the distribution of scores.
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It follows from (11) that the equilibrium distribution of agent i�s score is

Ki(sj� i) = e
s
�i
�1
; s 2 (�1; � i]:

Note that the distribution of scores pivots around the point where s = 0 and

that Ki(0j� i) = e�1 regardless of which a�i is induced. If � i < � j then an agent
in group i therefore wins with probabilityZ � i

�1
Kj(sj� i)njKi(sj� i)ni�1dKi(sj� i);

which simpli�es to enj(�i�1) 1
nj�i+ni

. Similarly, if � i � � j then an agent in group i
therefore wins with probabilityZ �j

�1
Kj(sj� i)njKi(sj� i)ni�1dKi(sj� i) +

Z � i

�j

Ki(sj� i)ni�1dKi(sj� i);

which can be simpli�ed to 1
ni

�
1� njeni

�
1
�i
�1
�

�i
nj�i+ni

�
. Alternatively, the latter,

where �i � 1, can be computed as follows. First, some member of group i

wins only if no member of group j wins. The probability that no member of

group j wins is 1 � njW (�jjnj; ni), where �j = 1
�i
2 (0; 1). If a member of

group j does not win, then any member of group i is equally likely to win, by

group-symmetry. Hence, the probability that a given agent in group i wins is
1
ni
(1� njW (�jjnj; ni)).
It is straightforward to prove thatW (�ijni; nj) is strictly increasing in �i and

satis�es W (1jni; nj) = 1
n
.

Finally, agents in group i are �rst claimants if �i > 1 or � i > � j. That is,

they are guaranteed to outscore all agents in group j if their score exceeds the

threshold sj(qj) = � j. The probability of this occurring is

1�Ki(� jj� i) = 1� e
�j
�i
�1

= 1� e
1
�i
�1
;

which is increasing in �i.
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Proof of Corollary 2. Expected utility to a member of group i is

viW (�ijni; nj)� ci(a�i );

where a�i is a function of �i, as described implicitly in (12). In fact, from (12) it

follows that
dci(a

�
i )

d�i
=
c0i(a

�
i )

t0i(a
�
i )
viF

0 (�ijni; nj) :

Simple di¤erentiation proves that t0i(a
�
i ) � c0i(a

�
i ), given ci is convex and fi

concave. Thus, c0i(a
�
i )

t0i(a
�
i )
� 1, meaning that costs rise at a rate no higher than

viF
0 (�ijni; nj). Thus, the rate of change in expected utility when �i changes is

no smaller than

vi (W
0 (�ijni; nj)� F 0 (�ijni; nj)) :

This expression is independent of the technology. Indeed, it can be veri�ed that

it is positive when ni � 2 (and when ni = 1 and �i > 1, but not necessarily when
ni = 1 and �i < 1). The corollary follows.

Proof of Corollary 3. Given symmetric technologies,

s1(q)� s2(q) = � 1 � � 2 + � 1f(a1) lnH(q)� � 2f(a2) lnH(q)
= � 1 � � 2 + (� 1f(a1)� � 2f(a2)) lnH(q)
= � 2 [(�1 � 1) + (�1f(a1)� f(a2)) lnH(q)] :

The slope of s1(q) � s2(q) is determined by the sign of �1f(a1) � f(a2). Hence,
s1(q)� s2(q) is either weakly increasing or weakly decreasing and it thus crosses
zero at most once. It therefore su¢ ces to compare the corners, i.e. the extreme

performances q and q. First, s1(q)� s2(q) = � 2 (�1 � 1) is positive if �1 > 1 and
negative if �1 < 1. Second, s1(q) � s2(q) ! 1 as q ! q if �1f(a1) � f(a2) < 0
and s1(q)� s2(q)! �1 if �1f(a1)� f(a2) > 0.
When �1 � 1, it follows from Proposition 5 and v1 > v2 that a1 > a2. Hence,

�1f(a1)�f(a2) > 0. It follows that s1(q)�s2(q) is �rst negative and then positive.
If �1 < 1 then s1(q) � s2(q) is negative. Therefore, if �1f(a1) � f(a2) > 0

then s1(q)�s2(q) is always negative. This conclusion applies if �1 is close to one.
However, as �1 tends to zero, the term �1f(a1) � f(a2) tends to �f(as2) < 0.
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Thus, when �1 is close to zero, s1(q) � s2(q) is �rst positive and then negative.
Since a1 is strictly increasing in �1 and a2 is strictly decreasing in �1, �1f(a1)�
f(a2) is strictly increasing in �1. Thus, there is a unique value of �1 for which

�1f(a1)� f(a2) = 0. This is �01 in the statement of the corollary.

Proof of Proposition 7. At �1 = v1
v2
> 1, it holds that a�1 > a�2. Then, by

Lemma 1, the MRT satis�es

MRT = �t
0(a�1)

t0(a�2)

n1
n2
� �n1

n2
;

when t(ai) is convex. Convexity of t also implies that the feasible set is convex,

again by Lemma 1. Given the objective is to maximize total e¤ort, MRT�MRS.
The optimal action pro�le must therefore entail a weakly lower a1and a weakly

higher a2 than what is implied by �1 = v1
v2
. Thus, the optimal value of �1 must

be no greater than v1
v2
.

Next, �s1 < 1. If �
s
1 > 0 then at �1 = �

s
1 it holds by de�nition that a1 = a2

and the MRT is therefore

MRT = �v2
v1

n1
n2
�s1 > �

n1
n2
=MRS

and it follows that the optimal value of �1 is strictly greater than �s1. Hence,

a�1 > a
�
2 in equilibrium. If �

s
1 = 0, then MRT=0 and the same argument applies.

At �1 = 1, the MRT is

MRT = �t
0(a�1)

t0(a�2)

v2
n�1
n2

v1
n�1
n2

n1
n2

= �
�
t0(a�1)

t(a�1)

�
t0(a�2)

t(a�2)

�
n1
n2
;

where t0(ai)
t(ai)

coincides with the derivative of ln t(ai). If t is log-concave then t0(ai)

is decreasing, and it follows that

MRT � �n1
n2
=MRS;

which in turn implies that the optimal value of �1 is no smaller than 1.
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Conversely, if t is locally log-convex, then there is an interval of actions such

that if both a�1 and a
�
2 are in the interval and a

�
1 > a

�
2, thenMRT < MRS. Thus,

if �1 = 1 induces actions in this interval, then the optimal value of �1 is below

one. At �1 = 1, ti(a�i ) = vi
n�1
n2
, which means that a�i can be placed in the desired

interval by increasing or decreasing vi appropriately. This completes the proof.

Proof of Proposition 8. Convexity of t implies that the feasible set is convex,

by Lemma 1. Monotonicity and quasi-concavity of U0(a) imply that the designer�s

indi¤erence curve is convex. Thus, the optimal value of �1 is identi�ed by the

tangency condition.

Now, a key observation is that the MRS at a1 = a2 is �n1
n2
, since the symmetry

assumption implies that the marginal utility to the designer of any agent�s action

is the same at such a point. Thus, whenever the indi¤erence curve meets the

frontier of the feasible set at a1 > a2 �which requires �1 > �s1 �the MRS is

larger than �n1
n2
(closer to zero). Thus, at �1 = ��1 > �

s
1, it holds by de�nition

that MRT = �n1
n2
and therefore

MRT = �n1
n2
�MRS:

Thus, �U1 � ��1 .
Next, as in Proposition 7, if �s1 > 0 then at �1 = �

s
1 < 1, a1 = a2 and

MRT = �v2
v1

n1
n2
�s1 > �

n1
n2
=MRS:

Thus, �U1 > �
s
1. If �

s
1 = 0, then MRT= 0 and the same arguments apply.

The last statement of the proposition follows from the discussion prior to

the proposition. In more detail, consider an indi¤erence curve that meets the

feasible set at a1 = a2, where �1 = �s1. The former has slope �n1
n2
for all eligible

U0(a). This action pro�le is feasible but not optimal. The more curvature the

indi¤erence curve has, the smaller is the superior set. If the superior set is small

enough, then it only contains points on the frontier for which �1 < 1. In this case

it follows trivially that �U1 < 1. Now, for a concrete example, assume that the

designer has CES utility over a. In the limit, this approaches Leontief for which

the only point on the frontier of the feasible set that is in the superior set is the
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a1 = a2 point that the indi¤erence curve shares with the feasible set. Hence, with

CES utility, there is always parameter values for which �U1 < 1.
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Appendix B: Symmetric contests with a single

costly prize

This appendix considers a special case of a Separable and Monotonic contest, as

de�ned in Section 4. Speci�cally, it is assumed that there is a single prize, which

is costly to the designer to award. The aim of the appendix is to explore how

the optimal action pro�le and the optimal design depends on the cost. However,

it is assumed for simplicity that all agents are identical and must be induced to

take symmetric actions. Hence, subscripts are omitted.

Let z � 0 denote the cost of the prize to the designer. Although the feasible
set is independent of z, the optimal action pro�le is now generally speaking both

in the interior of the feasible set and sensitive to z. From (10), the prize is

awarded only if the highest individual score exceeds z. Thus, there is a minimum

standard qz such that the prize is given out only if at least one agent performs

above qz. Note that qz depends on the symmetric equilibrium action, a, and that

(10) implies that L(qzja) > 0 when a < as. It can be veri�ed from the agents�

�rst-order conditions that qz is strictly decreasing in a for all a < as.20 Stated

di¤erently, a lower standard and a higher equilibrium action go hand in hand.

This in turn means that the probability that the prize is awarded, 1�G(qzja)n,
increases when a higher action is induced.

The designer�s problem is to induce an action a to maximize expected payo¤

U0(a; a; :::; a)� z(1�G(qzja)n):

Now consider an increase in cost z. This makes it less attractive to award the

prize. Given the conclusion in the previous paragraph, this implies that the

designer will induce a lower action. In summary, when the prize is costlier to the

designer, she induces a lower action by imposing a higher standard. However,

when the cost of the prize becomes too high, the designer is better o¤ shutting

down the contest.

20When a < as, the action pro�le is in the interior of the feasible set. In contrast, Proposition
2 considers action pro�les along the frontier of the feasible set and a minimum standard that
is found where the LR is zero.
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Figure 3: The equilibrium standard and equilibrium action as a function of costs.

As an example, consider a special case of the spanning model, with

G(qja) =
p
aq2 +

�
1�

p
a
�
q; q 2 [0; 1] ;

whenever a 2 [0; 1). Assume v = 6 and c(a) = a. If the prize is costless, or

z = 0, the optimal minimum standard is bq = 1
2
. The highest action that can be

implemented is then a = 9
16
.

For simplicity, assume that there is exactly one contestant or agent. Thus,

the agent wins the prize if and only if his performance exceeds the minimum

standard. For any given minimum standard qz, the �rst-order condition implies

that the agent�s best response is a = 9 (qz)2 (1�qz)2, which is of course maximized
if qz = bq = 1

2
. However, it may be better to increase qz in order to lower

the probability that the designer has to incur the cost of awarding the prize.

Whenever qz > 1
2
, a and qz move in opposite directions.

The probability that the prize is awarded is 1�G(qzja) = 3 (qz)4 � 6 (qz)3 +
3 (qz)2�(qz)+1. Assume that the designer wishes to maximize the agent�s action,
or U0(a) = a. Then, the designer�s expected payo¤ is

9 (qz)2 (1� qz)2 � z
�
3 (qz)4 � 6 (qz)3 + 3 (qz)2 � (qz) + 1

�
:

At z = 12
13
, this is maximized at qz = 2

3
and at exactly zero expected payo¤.
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Thus, it is optimal for the designer to shut down the contest if z > 12
13
, which can

be achieved by imposing a minimum standard of q = 1. On the other hand, as

long as z 2
�
0; 12

13

�
, a minimum standard in the interval

�
1
2
; 2
3

�
is optimal and this

minimum standard is increasing in z. Figure 3 illustrates the solution.

Note that z = 12
13
is substantially higher than the action that is induced at

qz = 2
3
, which is a = 4

9
. Even though the price is extremely expensive to the

designer, the contest is still pro�table when z is just below 12
13
because there is

only a small chance that the prize must be awarded.
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Appendix C: The best-shot model

This appendix complements the treatment of the best-shot model in Section 5.

Among other things, the CSF is computed and the feasible set is constructed

when rationing is possible. It concludes with a discussion of how to microfound

the biased lottery CSF that is often used in the current literature, and whether

this microfoundation is appealing or desirable.

C.1 Winning probabilities and CSFs

As mentioned in Section 6.2, it is possible to extend the model to more than two

groups of agents. The main complication is that there are now many types of

�sequential� allocation rules of the kind described at the beginning of Section

3.3. For example, group 1 might be �served� �rst, followed then by group 2

and later by group 3, while all remaining groups at the very end �ght each other

simultaneously if the prize is still available. A complete description of the feasible

set requires one to piece together all these cases. See Kirkegaard (2020) for details.

This subsection instead considers the simplest possible case in which the al-

location rule is �simultaneous�. Thus, every agent receives a score of the form

�iviLi(qijai), with �i 2 (0;1) for all i 2 N , and the agent with the highest score
wins. Using the notation from Section 5.1, this means that � i 2 (0;1). It turns
out that � i is in a sense a measure of how favorable the contest is to agent i, as

demonstrated in the following result.

Proposition 9 Consider the best-shot model with an arbitrary number of agents.
Fix an action pro�le a� on the frontier of the feasible set in which all agents are

active (ai > 0) and which is implemented by giving each agent a scoring function

si(qi) = �iviLi(qija�i ), with �i 2 (0;1) for all i 2 N . Then, agent i�s ex ante
equilibrium winning probability exceeds that of agent j if and only if � i > � j,

regardless of whether rationing is allowed or not.

Proof. Note that if agents i and j perform equally well given what is expected

of them � i.e. they perform at the same quantiles, or Gi(qija�i ) = Gj(qjja�j) �
then agent i�s score beats agent j�s score if � i > � j and the likelihood-ratios are

positive. However, agent�s j�s score is higher if the likelihood-ratios are negative.
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Consequently, the result is trivial if rationing is allowed. Then, only positive

likelihood-ratios have a chance of winning. Recall that agents i and j have positive

likelihood-ratios with the same probability, speci�cally 1 � e�1. Given a perfor-
mance at any �xed quantile above e�1, such that Gi(qija�i ) = Gj(qjja�j) � e�1,

agent i outscores agent j if and only if � i > � j. Since quantiles are distributed

the same way (uniformly) for both agents, it now follows that agent i wins with

a higher probability in equilibrium if and only if � i > � j.

If rationing is ruled out, then performance with negative likelihood-ratio come

into play. Given � i, agent i�s score is in equilibrium distributed according to

Ki(sij� i) = e
si
�i
�1
; si 2 (�1; � i]

with density

ki(sij� i) =
1

� i
e
si
�i
�1
; si 2 (�1; � i]:

Without loss of generality, arrange agents in ascending order based on their � i,

with � 1 � � 2 � :::�N . Let � 0 = �1. A score above � j automatically beats agent
j. Hence, agent i�s equilibrium winning probability can then be written as

P �i (� 1; � 2; :::; �N) =

Z �1

�0

�Q
j�1;j 6=iKj(sj� j)

�
ki(sj� i)ds

+

Z �2

�1

�Q
j�2;j 6=iKj(sj� j)

�
ki(sj� i)ds

+:::+

Z � i

� i�1

�Q
j�i;j 6=iKj(sj� j)

�
ki(sj� i)ds

=
1

� i

iX
m=1

�m;

where

�m =

Z �m

�m�1

e
P
j�m

�
s
�j
�1
�
ds

=
1P

j�m
1
�j

 
e
P
j�m

�
�m
�j
�1
�
� e

P
j�m

�
�m�1
�j

�1
�!

:
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Going forward, for i = 2; :::; n, it is useful to compare

�i =
1P
j�i

1
�j

 
e
P
j�i

�
�i
�j
�1
�
� e

P
j�i

�
�i�1
�j

�1
�!

and

i�1X
m=1

�m �
Z � i�1

�0

e
P
j�i�1

�
s
�j
�1
�
ds:

=
1P

j�i�1
1
�j

e
P
j�i�1

�
�i�1
�j

�1
�

=
1P

j�i�1
1
�j

e
P
j�i

�
�i�1
�j

�1
�
:

Then, note that for i = 2; :::; n,

P �i � P �i�1 =
1

� i

iX
m=1

�m �
1

� i�1

i�1X
m=1

�m

=
1

� i
�i �

�
1

� i�1
� 1

� i

� i�1X
m=1

�m

� 1

� i

1P
j�i

1
�j

 
e
P
j�i

�
�i
�j
�1
�
� e

P
j�i

�
�i�1
�j

�1
�!

�
�
1

� i�1
� 1

� i

�
1P

j�i�1
1
�j

e
P
j�i

�
�i�1
�j

�1
�
;

and where, de�ning xi =
P

j�i
1
�j
, the latter is proportional to

�i = (1 + � i�1xi) (e
� ixi � e� i�1xi)� (� i � � i�1)xie� i�1xi

= (1 + � i�1xi) e
� ixi � (1 + � ixi) e� i�1xi > 0

when � i > � i�1. Hence, it now follows that winning probabilities are arranged in

the same order as the � i�s.

Given a vector � that lists all � i�s, it is in principle possible to derive the CSF

�the probability that agent i wins for any given action pro�le a �by integrating
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out the uncertainty over performance, i.e. by calculatingZ �Z
Pi(qi;q�i)gi(qijai)dqi

�Y
j 6=i

gj(qjjaj)dq�i:

In the best-shot model, however, a more direct argument is also possible. This

is illustrated in the proof of the next proposition, under the assumption that

rationing is ruled out and that all agents are active. In this case, negative scores

have a chance of winning.

Proposition 10 Under the assumptions in Proposition 9, if a� is the equilibrium
action pro�le and � i � � j for all j 2 N , then agent i wins with probability

bpi(aj� ) =
0@Q

j2Nnfig e
(�i��j)fj(aj)

�jfj(a
�
j
)

1A fi(ai)
� ifi(a�i )P
j2N

fj(aj)

�jfj(a�j )

; (22)

when rationing is ruled out, for any action pro�le a with ai > 0.

Proof. To start, note that the distribution of agent i�s score is

Si(sjai) =
�
es�� i

� fi(ai)

�ifi(a
�
i
) ; s 2 (�1; � i]

when he takes action ai rather than a�i . It is as if he draws
fi(ai)
� ifi(a�i )

scores from the

distribution es�� i, but only the best score is counted. The range of scores depends

on the identity of the agent, with � i describing the highest possible score that

agent i can achieve. Assume agent i is the agent with the lowest � , or � i � � j.
Then, in order for agent i to win it is necessary that all other agents score below

� i, the probability of which is0@Q
j2Nnfig e

(�i��j)fj(aj)
�jfj(a

�
j
)

1A : (23)

Given this event, however, the conditional distribution of agent j�s score is

Sj(sjaj)
Sj(� ijaj)

=
�
es�� i

� fj(aj)

�jfj(a
�
j
) ; s 2 (�1; � i]:
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Hence, it is as if all agents draw scores from the same distribution, es�� i. Since

each draw therefore has an equal chance of winning, the conditional probability

that agent i wins is
fi(ai)
� ifi(a�i )P
j2N

fj(aj)

�jfj(a�j )

: (24)

Combining (23) and (23) yields the CSF in the proposition.

As a consistency check, note that if � i = � j for all j 2 N then bpi(a�j� ) = 1
n

and all agents win with equal probability in equilibrium. Note that the �rst term

in (22) depends on the action pro�le, for reasons that are carefully explained in

the proof of the proposition. Due to this distortion, (22) is not a lottery CSF

(except in the special case where � i = � j for all j 2 N).

C.2 The feasible set with and without rationing

Next, the feasible set of implementable actions is characterized. As explained in

the main text, it is assumed that

lim
ai!0

c0i(ai)
fi(ai)

f 0i(ai)
= 0;

for all i. Now, the highest possible implementable action of agent i, ai, can be

characterized succinctly in the best-shot model. This follows from the proof of

Proposition 1.

Corollary 4 In the best-shot model, any action no greater than the unique solu-
tion ai to

c0i(ai)
fi(ai)

f 0i(ai)
=
vi
e

(25)

can be implemented by appropriately designing the assignment rule.

Proof. In the best-shot model, where bqi(ati) = H�1
�
e
� 1

fi(a
t
i
)

�
or H(bqi(ai)) =

e
� 1

fi(a
t
i
) , (17) is

U i(ai) = vi

�
1� e

� fi(ai)

fi(a
t
i
)

�
� ci(ai)
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and (18) simpli�es to
1

c0i(a
t
i)

f 0i(a
t
i)

fi(ati)
� e

vi
:

By concavity of fi and convexity of ci, the left hand side is decreasing. Hence,

the condition is satis�ed if and only ati is no greater than the solution to (25).

By Proposition 1, it is then possible to implement the action.

Using similar logic, it is possible to characterize the corners of the frontier

of the feasible set when there are two groups of agents and the rules are group-

symmetric. As in Section 3, let asi denote the highest possible action is group i

when rules are group-symmetric. When ni = 1, asi = ai but otherwise a
s
i < ai.

Similarly, let asi denote the smallest possible action along the frontier for an agent

in group i when rules are group-symmetric. This is the action that is implemented

when aj = asj in the other group, j 6= i. This means that an agent in group i has
a chance of winning only if all agents in group j have negative likelihood-ratios.

If ni � 2, then competition within group i still ensures that asi > 0. However,

if ni = 1, then agent i is simply the �residual claimant�of the prize and has no

incentive to exert e¤ort.

Corollary 5 In the best-shot model with two groups, group-symmetric rules, and
no rationing, the frontier of the feasible set contains the corners (as1; a

s
2) and

(as1; a
s
2), where a

s
i and a

s
i solve

c0i(a
s
i )
fi(a

s
i )

f 0i(a
s
i )
= vi

ni � 1 + e�ni
n2i

and c0i(a
s
i )
fi(a

s
i )

f 0i(a
s
i )
= vie

�nj ni � 1
n2i

; i; j = 1; 2 and j 6= i:

Here, asi is strictly decreasing in ni and independent of nj. Similarly, a
s
i is strictly

positive if and only if ni � 2 and it is then strictly decreasing in both ni and nj.

Proof. To implement asi , the contest rules must imply that an agent in group
i wins if and only if his likelihood-ratio is positive and (by group-symmetry and

the MLRP) if his performance is higher than the performance of all other agents

in his group. Given all other agents in group i takes action asi , the relevant
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�rst-order condition is

c0i(a
s
i ) = vi

Z qi

bqi(asi ) (Gi(qija
s
i ))

ni�1 Li(qijasi )gi(qijasi )dqi

= vi
f 0i(a

s
i )

fi(a
s
i )

Z qi

bqi(asi ) (Gi(qija
s
i ))

ni�1 (1 + lnGi(qijasi )) gi(qijasi )dqi

Substituting the equilibrium quantiles of agent i�s performance, z = Gi(qijasi )
and dz = gi(qijasi )dqi, yields

c0i(a
s
i )
fi(a

s
i )

f 0i(a
s
i )

= vi

Z 1

e�1
zni�1 (1 + ln z) dz

= vi
ni � 1 + e�ni

n2i
:

Simple di¤erentiation shows that the right hand side is decreasing in ni.

Turning to asi , this is the action that is implemented when the other group is

induced to take action aj = asj, j 6= i. Thus, an agent in group i has a chance of
winning only if all agents in group j have negative likelihood-ratios. This occurs

with probability e�nj . Conditional on this event, the agent must moreover (by

group-symmetry and the MLRP) outperform all other agents in his group. Since

rationing is ruled out, such an agent may win even if his own likelihood-ratio is

negative. Thus, the �rst-order condition is

c0i(a
s
i ) = vie

�nj
Z qi

q
i

(Gi(qijasi ))
ni�1 Li(qijasi )gi(qijasi )dqi;

which reduces to the statement in the corollary. The rest follows by simple

di¤erentiation.

Next, the interior part of the frontier is characterized.

Proposition 11 In the best-shot model with two groups, group-symmetric rules,
and no rationing, the frontier of the feasible set contains the corners (as1; a

s
2)

and (as1; a
s
2). The remaining action pro�les on the frontier can be traced out by

varying � 1 > 0 and � 2 > 0, where the equilibrium action of an agent in group i
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is determined by

c0i(a
�
i )
fi(a

�
i )

f 0i(a
�
i )
= viF

�
� i
� j
jni; nj

�
;

with

F

�
� i
� j
jni; nj

�
=

8>>>>><>>>>>:
e
nj

�
�i
�j
�1
�
nj

�i
�j
+ni�1�

nj
�i
�j
+ni

�2 if � i
�j
2 (0; 1)

ni�1
n2i

+ e
ni

�
1

�i=�j
�1
�
nj
n2i

nj

�
�i
�j

�2
+
�i
�j
ni(2�nj)�n2i�

nj
�i
�j
+ni

�2 if � i
�j
� 1

:

Here, F
�
� i
�j
jni; nj

�
is strictly increasing in � i

�j
and satis�es F (1jni; nj) = n�1

n2
.

Hence, a�i is strictly increasing in
� i
�j
.

Proof. The corners are described in Corollary 5. To describe actions away from
the corners of the frontier, note that such actions must be interior and the two

�rst-order conditions must therefore be solved simultaneously. Assume �rst that

0 < � i � � j. Then, regardless of his performance, an agent in group i wins with
a probability strictly less than one when � i < � j. If his performance is qi, then

he beats an agent in group j if and only if si(qi) � sj(qj), which occurs if and

only if qi and qj are such that

e
�i��j
�j Gi(qija�i )

�i
�j � Gj(qjja�j);

where the term on the right hand side is the equilibrium distribution of the

performance of a member of group j. Hence, the interim probability that agent i

with performance qi beats such an agent is e
�i��j
�j Gi(qija�i )

�i
�j . To win, the agent

has to beat all agents in group j as well as all the other agents in group i. With

this in mind, agent i�s �rst-order condition in equilibrium is

vi

Z qi

q
i

Li(qija�i )
�
e
�i��j
�j Gi(qija�i )

�i
�j

�nj
Gi(qija�i )ni�1gi(qija�i )dqi � c0i(a�i ) = 0
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or

vi
f 0i(a

�
i )

fi(a�i )
e
nj

�i��j
�j

Z qi

q
i

(1 + lnGi(qija�i ))Gi(qija�i )
nj

�i
�j
+ni�1

gi(qija�i )dqi � c0i(a�i ) = 0:

As in Corollary 5, substituting the equilibrium quantiles of agent i�s performance,

z = Gi(qija�i ) and dz = gi(qija�i )dqi. This gives

c0i(a
�
i )
fi(a

�
i )

f 0i(a
�
i )

= vie
nj

�i��j
�j

Z 1

0

(1 + ln z) z
nj

�i
�j
+ni�1

dz

= vie
nj

�
�i
�j
�1
�
nj

� i
�j
+ ni � 1�

nj
� i
�j
+ ni

�2 ;
which nails down a�i since the left hand side is strictly increasing in a

�
i .

Assume now that � i > � j > 0. In this case, agent i beats any agent in group

j with probability one if his performance is high enough, or speci�cally if qi � eqi
where

e
�i��j
�j Gi(eqija�i ) �i�j = 1;

which implies that

Gi(eqija�i ) = e �j��i�i

and

1 + lnGi(eqija�i ) = � j
� i
:

Agent i�s �rst order condition is now

vi

Z eqi
q
i

Li(qija�i )
�
e
�i��j
�j Gi(qija�i )

�i
�j

�nj
Gi(qija�i )ni�1gi(qija�i )dqi

+ vi

Z qi

eqi Li(qija
�
i )Gi(qija�i )ni�1gi(qija�i )dqi � c0i(a�i ) = 0:

The same substitution as before yields

c0i(a
�
i )
fi(a

�
i )

f 0i(a
�
i )
= vie

nj
�i��j
�j

Z e

�j��i
�i

0

(1 + ln z) z
nj

�i
�j
+ni�1

dz+vi

Z 1

e

�j��i
�i

(1 + ln z) zni�1dz
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or

c0i(a
�
i )
fi(a

�
i )

f 0i(a
�
i )
= vi

0B@ni � 1
n2i

+ e
ni

�
1

�i=�j
�1
�
nj
n2i

nj

�
� i
�j

�2
+ � i

�j
ni (2� nj)� n2i�

nj
� i
�j
+ ni

�2
1CA :

As before, a�i is nailed down because the left hand side is strictly increasing. The

characterization result in the proposition now follows. The fact that F
�
� i
�j
jni; nj

�
is strictly increasing in � i

�j
is veri�ed by di¤erentiation, and it is straightforward

to verify that

F (1jni; nj) =
n� 1
n2

:

It can be veri�ed that as � i
�j
converges to in�nity or zero, ai converges to asi

and asi as described in Corollary 5, respectively.

The frontier of the feasible set is described in a similar fashion when rationing

is allowed.

Proposition 12 In the best-shot model with two groups, group-symmetric rules,
and with rationing allowed, the action pro�les on the frontier of the feasible set,

away from the corners, can be traced out by varying � 1 > 0 and � 2 > 0. The

equilibrium action of an agent in group i is determined by

c0i(a
�
i )
fi(a

�
i )

f 0i(a
�
i )
= viFR

�
� i
� j
jni; nj

�
;

where

FR

�
� i
� j
jni; nj

�
= F

�
� i
� j
jni; nj

�
+

e�(ni+nj)�
nj

� i
�j
+ ni

�2 :
Here, FR

�
� i
�j
jni; nj

�
is strictly increasing in � i

�j
and satis�es FR (1jni; nj) = n�1

n2
+

e�n

n2
. Hence, a�i is strictly increasing in

� i
�j
.

Proof. The proof follows the same steps as in the proof of Proposition 11.

The only di¤erence is that an agent in group i now has zero probability of

winning if qi < bqi(a�i ) or, using the same substitution as in Proposition 11, if
64



z � Gi(bqi(a�i )ja�i ) = e�1. Hence, the lower bounds on the integrals that are eval-
uated in the proof of Proposition 11 change. This produces FR( � i�j ) as stated in

the proposition. Monotonicity can be veri�ed by di¤erentiation.

Note that FR( � i�j ) > F (
� i
�j
). Since ti is increasing, it follows, as expected, that

the action pro�le for any given � i
�j
is higher when rationing is allowed than when

it is not. It can be veri�ed that Lemma 1 is unchanged when rationing is allowed.

Winning probabilities can be computed using the method described in the

proof of Proposition 6, except the integration is performed only over non-negative

scores. With �i = � i
�j
, this yields equilibrium winning probabilities for an agent

in group i of

WR (�ijni; nj) =

8><>:
enj(�i�1) 1

nj�i+ni
� e�(ni+nj)

nj�i+ni
if �i 2 (0; 1)

1
ni

�
1� njeni

�
1
�i
�1
�

�i
nj�i+ni

�
� e�(ni+nj)

nj�i+ni
if �i � 1

or simply

WR (�ijni; nj) =W (�ijni; nj)�
e�(ni+nj)

nj�i + ni
; �i 2 (0;1):

With the proof of Corollary 2 in mind, it can be veri�ed that

WR (�ijni; nj)� FR (�ijni; nj)

is increasing in �i whenever W (�ijni; nj) � F (�ijni; nj) is. The only case in
which W (�ijni; nj) � F (�ijni; nj) is not increasing is when ni = 1 and �i < 1.
Checking this case, however, it turns out that WR (�ijni; nj)�FR (�ijni; nj) is in
fact increasing. In other words,WR (�ijni; nj)�FR (�ijni; nj) is globally increasing
in �i for all (ni; nj). By the argument in Corollary 2, it follows that expected

utility to agents in group i is strictly increasing in �i.

C.3 Microfoundations for the biased lottery CSF

It is possible to use the best-shot model to provide microfoundations for (15).

Proposition 13 Consider the best-shot model with Hi(qi) = H(qi), i 2 N . As-
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sign agent i with performance qi a base score of sBi (qi) = H(qi)
1=bi 2 [0; 1],

bi > 0. Draw an auxiliary score sAUXi for agent i from the distribution
�
sAUXi

��i,
sAUXi 2 [0; 1], �i � 0. Let agent i�s �nal score be sFMi (qi) = maxfsBi (qi); sAUXi g.
Finally, draw a score sD for the designer from the distribution

�
sD
�z
, sD 2 [0; 1],

z � 0. Let the individual (agent or designer) with the highest score win. Then,
the CSF is given by (15).

Proof. Agent i�s �nal score is below si if and only if both sBi and s
AUX
i are below

si. First, sBi � si when qi � H�1 �sbii �, the probability of which is H(qi)fi(ai) =
s
bifi(ai)
i . Second, the probability that sAUXi � si is s

�i
i . Hence, the probability

that the �nal score is below si is s
bifi(ai)
i s�ii = s

bifi(ai)+�i
i . It is as if agent i draws

bifi(ai) + �i �ideas�from a uniform distribution. Similarly, the designer draws z

�ideas�from a uniform distribution. Since each �idea�is equally likely to be the

best, the ex ante probability that agent i wins is (15).

The transformation of qi into a base score maps the idea from the support

[q; q] into a quality index on [0; 1], where the index is identity dependent via bi.

Given action ai, agent i then draws bifi(ai) ideas from a uniform distribution on

this index. He is then given �i fake ideas by the designer, again drawn from a

uniform distribution. The agent now has a total of bifi(ai) + �i real and fake

ideas. The designer also draws z fake ideas from a uniform distribution. Each

idea, real or fake, has an equal chance of winning, yielding (15).

The stochastic nature of the fake ideas may or may not be palatable. Thus,

Proposition 13 should not be taken as a defense of (15) but rather as a clari�cation

of the lengths one must go to in order to justify it. The transformation of the

performance into a quality index seems more appealing. However, this particular

transformation is still ad hoc.21 In fact, Proposition 13 merely shows that (15)

can be implemented in the Fullerton and McAfee (1999) model. Hence, it follows

that the set of implementable actions must in reality be strictly larger than the

set of actions that can be implemented by using (15).22

21Similarly, giving agents a multiplicative bonus in Hirschleifer and Riley�s (1992) model
yields pi(aj0;b; 0). This can also be obtained by variying the �i parameter in Clark and Riis�
(1996) random utility framework. Again, these are ad hoc ways to manipulate the contest.

22Fu and Wu (2020) and most of the prior literature restrict head starts to be non-negative.
Drugov and Ryvkin (2017) show that negative head starts may be better. However, negative
head starts cannot be justi�ed by Proposition 13.
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One drawback of using (15) for contest design is that it says little about

how to implement the optimal design in practice. For instance, how exactly

is the playing �eld supposed to be made level if the designer does not observe

actions? Proposition 13 tells us how this can be achieved by linking design to the

observable signals. In other words, the kind of story embodied in Proposition 13 is

important if the desire is to apply lessons from (15) in practice. The issue is that

(15) pushes the performance pro�le to the back, which is unfortunate since this

is the observable variable. The stochastic performance approach in the current

paper has the distinct advantage that it starts directly from the observables.
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