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Abstract

I examine a contest with identity-dependent rules in which contestants are
privately informed and ex ante heterogenous. A contestant may su¤er from
a handicap or bene�t from a head start. The former reduces the contestant�s
score by a �xed percentage; the latter is an additive bonus. Although total
e¤ort increases if the weak contestant is favored with a head start, the optimal
use of handicaps is not as clear-cut. Depending on the nature of the asymmetry,
it may or may not be optimal to handicap the strong contestant. Moreover,
it is generally optimal to combine the two instruments. For instance, when
contestants are su¢ ciently heterogenous the weak contestant should be given
both a head start and a handicap. It may also be possible to induce higher
e¤ort and at the same time make both contestants better o¤ ex ante.
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1 Introduction

There are countless examples of contests, broadly de�ned, in which one contestant is
explicitly or implicitly favored over his competitors. Regulation is often imposed to
manipulate the contest; examples include sports (e.g. golf and horse racing), a¢ rma-
tive action, uneven treatment of internal and external applicants for senior positions,
and the preferential treatment occasionally given to domestic �rms in procurement.
However, the �ner details of regulation di¤er from example to example. Typically,
an additional complication is that the advantaged and disadvantaged contestants
are heterogenous on some dimension. In fact, it is often precisely this underlying
asymmetry among contestants that is used to justify rules that are asymmetric.
The objective of this paper is to formally analyze the consequences of favoritism

when contestants are heterogenous. I will emphasize that di¤erent types of favoritism
may have dramatically di¤erent e¤ects, and, accordingly, that they should be utilized
di¤erently. I will also provide a rationale for the simultaneous use of several di¤erent
(and sometimes seemingly contradictory) instruments. An application to real-world
contests for research funding is discussed at the end of the paper.
In keeping with the objective of the paper, two simple and realistic forms of

favoritism are considered. A contestant has a head start if he has an �absolute�
advantage over his rivals, in the sense that he wins even if his e¤ort falls short of
his rivals� e¤ort by a pre-speci�ed amount. Alternatively, the contestant can be
favored by handicapping his rivals, i.e. by discounting their e¤ort by a pre-speci�ed
percentage. To be clear, these instruments are analyzed not because they are optimal
(which typically they are not), but rather because they are observed in practice and in
combination serve to convey the main point, namely that di¤erent types of favoritism
function in very di¤erent ways. In short, it matters how favoritism is modeled.1

To be more speci�c, a handicap a¤ects the marginal return to increasing e¤ort,
but this is not the case for a head start. As a result, the two instruments lead to
di¤erent strategic considerations. Indeed, it may be in the contest designer�s interest
to combine di¤erent instruments, for instance by giving a contestant a head start
and a handicap at the same time.
The model and related literature is discussed next. An overview of the main

results follow.

Model and Literature. I model the contest as an all-pay auction in which

1Head starts and handicaps are identity-dependent. Alternatively, the contest can be manipu-
lated by imposing restrictive rules that apply to all contestants. Although the rules are symmetric,
the strategic response may be di¤erent for weak and strong contestants. The most common exam-
ples, namely bidding caps and bidding �oors, are reviewed in Section 10.
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bidders are independently and privately informed about their valuation of the prize.
For tractability, there are two bidders, one �strong�and one �weak�. Bidders are
risk neutral and the cost of bidding is linear in the bid.2 Together, the assumptions
permit the use of mechanism design. Hence, abstract insights from mechanism design
are used to analyze the properties of two speci�c instruments, rather than to derive
the �fully optimal�contest (which is characterized in Myerson (1981)).
The literature on favoritism in all-pay auctions is small. Consider �rst the com-

plete information literature. Konrad (2002) examines a two-bidder model with head
starts and handicaps, but he assumes bidders are symmetric. Siegel (2009) examines
a more general model in which contestants may be heterogenous. However, both
assume the rules are exogenous.
In contrast, Fu (2006) endogenizes handicaps in a model with two heterogeneous

bidders. He �nds that it is optimal to handicap the strong bidder. I will show that
once incomplete information is introduced, the comparative statics change. Thus,
Fu�s (2006) conclusion is not robust quantitatively (see Section 3) or indeed necessar-
ily qualitatively (see Section 8). Although it appears not to have been noted before,
it is easy to show that the complete information model leads, unambiguously, to the
conclusion that the weak bidder should be given a head start and a handicap (see
Section 7). In the incomplete information model, however, this property holds only
if the asymmetry is su¢ ciently large. Konrad�s (2002) and Siegel�s (2009) models
are discussed in Sections 8 and 10, respectively. In both cases, examples can be pro-
vided in which the incomplete information model yields di¤erent conclusions than
the complete information model. Thus, the complete information model is arguably
somewhat fragile and it seems worthwhile to examine its robustness.
With incomplete information, there appears to be no previous papers dealing

with head starts, and only three that examine handicaps.3 Lien (1990) and Feess
et al (2008) assume the two bidders are homogeneous. Lien (1990) proves that the
handicapped bidder wins less often than is e¢ cient if types are drawn from the
same uniform distribution. Feess et al (2008) show that this result holds for any
distribution function. Clark and Riis (2000) allow bidders to be heterogenous, but
assume types are drawn from uniform distributions. In their model, it is pro�table
to handicap the strong bidder (expected revenue increases) although social surplus

2Moldovanu and Sela (2001) and Gavious, Moldovanu, and Sela (2002) allow the cost of bidding
to be non-linear in the bid but they assume that bidders are homogeneous. Clark and Riis (2000)
assume bidding costs are non-linear with types that are drawn from di¤erent uniform distributions.

3More accurately, Hickman (2011) in fact considers a policy that is equivalent to a head start.
However, his model di¤ers in important aspects from the more standard literature on all-pay auc-
tions. Hickman�s (2011) paper is discussed in more detail below.

3



decreases. The current paper is the �rst to study the pro�tability of handicaps in
a more general setting than the uniform model.4 It is also the �rst to consider the
combination of head starts and handicaps in an incomplete-information model.
Depending on the context, a plethora of di¤erent objectives may underlie the

manipulation of contests. For the most part, I will assume that the designer is
attempting to maximize the e¤ort or bids of the contestants. Section 9 considers
objective functions that take bidders�payo¤s into account. The main �ndings of the
paper are outlined below, classi�ed by the objective of the designer.

Revenue Maximization. Given suitable regularity assumptions, it is always prof-
itable to give the weak bidder a head start, irrespective of any handicap. Any head
start to the strong bidder lowers expected revenue, unless the strong bidder already
su¤ers from a very severe handicap.
Although it is pro�table to handicap the strong bidder in Clark and Riis�(2000)

model, the impact of a handicap on expected revenue is non-trivial in the general
case. Nevertheless, Section 5 describes two environments where it is optimal to hand-
icap the strong bidder. The uniform model is a special case of one of these models.
On the other hand, Section 8 provides an example in which it is optimal to handi-
cap the weak bidder. Another example in Section 8 considers an environment with
symmetric bidders that violates the typical regularity assumptions. In that example,
it is pro�table to give a head start to a random bidder. Note that the complete
information model cannot produce the conclusions in the examples in Section 8.
There are parallels between Maskin and Riley�s (2000) revenue ranking of stan-

dard auctions and the pro�tability of handicaps in all-pay auctions. For example,
Clark and Riis�s (2000) uniform model coincides with the leading example in Maskin
and Riley (2000) of a situation where the �rst-price auction is more pro�table than
the second-price auction. However, from a methodological point of view, the ap-
proach in the current paper di¤ers from that used by Maskin and Riley (2000). In
short, the main challenge in both problems is that one mechanism does not domi-
nate another for all combinations of types. This complication explicitly lead Maskin
and Riley (2000) to claim that mechanism design would be of no help in addressing
the problem. Nevertheless, Kirkegaard (2011a) has recently shown that mechanism
design can in fact be used to rank standard auctions. Indeed, two of Maskin and
Riley�s (2000) propositions are corollaries of a more general theorem in Kirkegaard
(2011a). The mechanism design approach is also used in the current paper.

4The uniform model lends itself to a �brute force�approach because the equilibrium allocation
and revenue can be characterized in closed form. However, in the general case considered here only
an implicit characterization is possible. For this reason, the current paper must necessarily rely on
a di¤erent methodology than Clark and Riis (2000).

4



As mentioned, the joint use of head starts and handicaps is also examined.
Though the weak bidder should be given a head start, the size of the asymmetry
determines who should be handicapped. The weak bidder is more likely to receive
both a head start and a handicap the larger the asymmetry between bidders is.
In summary, three scenarios are examined (depending on whether head starts,

handicaps, or both instruments are used). Since each scenario has its unique chal-
lenges, the method of proof is somewhat di¤erent for each scenario, although the
analysis is always based on mechanism design. However, Section 7 demonstrates that
the problem is �well-behaved�if the asymmetry between bidders is large enough, in
which case it becomes easy to unify the analysis and results of the three scenarios.

Bidders�payoffs. It is straightforward to maximize the sum of the bidders�payo¤s
in a contest: The prize should be given to the strong bidder, for free. He is, after
all, the bidder who is more likely to value the prize highly. However, there is no
worse mechanism from the weak bidder�s point of view. Social welfare functions
that take the distribution of payo¤ into account leads to markedly di¤erent policy
recommendations. For instance, compare the standard all-pay auction with an all-
pay auction in which bidder 1 is given a head start and a handicap. Bidder 1 is made
better o¤ if his type is low (due to the head start), whereas bidder 2 is made better
o¤ if his type is high (due to bidder 1�s handicap). In other words, since the two
instruments do not cancel each other out, it is possible to make both bidders better
o¤ ex ante. That is, both bidders are favored.5 Indeed, both bidders may become
better o¤ while expending more resources, meaning that the recipient of the e¤ort,
if any, is also better o¤. It is possible to favor all parties simultaneously.
In a similar vein, the analysis may shed light on questions surrounding a¢ rmative

action and how to �level the playing �eld�. Roemer (1998) suggests �equality of
opportunity� as a desirable norm, which means, roughly, that the distribution of
�achievements� should be equalized across bidders. Depending on the de�nition
of �achievements� and the nature of the asymmetry between bidders, head starts
and handicaps may or may not be �exible enough to create equality of opportunity,
although head starts never works.6

In the context of admission into university, the probability of enrollment or admis-
sion may be a useful measure of achievement. Incidentally, Hickman (2011) uses the

5The Oxford English Dictionary de�nes �favouritism� as �the unfair favouring of one person
or group at the expense of another�. However, the de�nition of �favour� implies only that the
favoured party is better o¤, not that another party is hurt.

6Calsamiglia (2009) makes the point that if one contest is manipulated, behavior in other
contests in which the same bidders also partake may be in�uenced. Thus, pursuing equality of
opportunity �locally�may not necessarily advance equality of opportunity �globally�.
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�enrollment gap�as one measure of the success of various a¢ rmative action policies.
In fact, the current paper and Hickman�s (2011) paper can be viewed as being at
opposite extremes of a set of models. In this paper, there are only two bidders. Thus,
strategic considerations are all-important, and the fact that di¤erent bidders have
di¤erent beliefs about each other obviously impacts equilibrium strategies. Hick-
man (2011), in contrast, considers a limiting game with a continuum of minority
students and non-minority students (i.e. clones of the weak bidder and the strong
bidder, respectively) as well as a continuum of distinct prizes. His model is meant
to capture the large scale of the education market. With unbiased rules, a minority
and non-minority student with the same type take the same action (study equally
hard). The reason is that each student is negligible and therefore has the same beliefs
about the mass of students he is competing with, whether he is a minority student
or not. In one interpretation of his model, this means that the initial allocation of
prizes is e¢ cient, i.e. the best placements are given to those that value them the
most. There will be an enrolment gap only because the underlying distribution of
types is di¤erent in the two groups, but not because they behave di¤erently. Note
that any intervention will be detrimental to e¢ ciency, contrary to the conclusions
of the current paper. Hickman (2011) show that a quota, by design, can eliminate
the enrollment gap in his model, but that a head start is less successful. In fact, a
head start to the minority students will be detrimental to overall e¤ort in Hickman
(2011), but not necessarily in the model in the current paper.

2 Model and Equilibrium

The contest is modelled as an all-pay auction. There are two bidders. Each bidder is
characterized by a privately known type which captures the value the bidder places
on winning the auction. More generally, the type can be thought of as the certainty
equivalent of winning, in the case where the actual value is not certain. Independently
of the other bidder, bidder i draws his type from the twice continuously di¤erentiable
distribution function Fi with support [0; vi], i = 1; 2. The distribution functions have
no mass points. The density, fi(v) = F 0i (v), is bounded above as well as bounded
below, away from zero. Finally,

hi(v) =
1� Fi(v)
fi(v)

is strictly decreasing, i = 1; 2. hi(v) is the reciprocal of the hazard rate.
The two bidders are heterogenous. Bidder 1 is �weak�and bidder 2 is �strong�.

Formally, F2 �rst order stochastically dominates F1, F2(v) < F1(v) for all v 2 (0; v1).
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It will also be assumed that f1(0) > f2(0) and v1 < v2. With the exception of Section
8, the assumptions made so far are imposed throughout the paper.
Next, de�ne �(v) as the solution to F1(�) = F2(v), v 2 [0; v2]. By de�nition,

bidder 1 is as likely to have a type below � as bidder 2 is to have a type below v; the
two bidders have the same �rank�. Let � = max�(v)=v and � = min�(v)=v, with

1 > � � v1
v2
� �:

The �rst inequality is attributable to �rst order stochastic dominance and the others
to the fact that �(v2) = v1. The di¤erence between � and � can be viewed as a
measure of how bidder heterogeneity varies with rank. The behavior of �(v)=v will
at times be important. The following de�nitions will therefore be useful.

De�nition 1 F2 is smaller than F1 in the star order if �(v)=v is non-decreasing.7

De�nition 2 F1 is said to be a scaled down version of F2 if Fi(v) = F ( vvi ), v 2 [0; vi],
i = 1; 2, and v1 < v2, where F is some distribution function with support [0; 1].8

The environment in De�nition 2 satis�es De�nition 1. Speci�cally, �(v)=v =
v2=v1 is constant when F1 is a scaled down version of F2. The uniform model is a
special case. The complete information model can also be considered a special case of
the model in De�nition 2, in which F is degenerate with mass 1 at v = 1. However,
the complete information model obviously violates the assumption that densities are
positive. De�nition 1 is satis�ed if F1 is concave and F2 is convex, for example.
The di¤erence between v and �(v) is also of some relevance.

De�nition 3 F1 is smaller than F2 in the dispersive order if v � �(v) is non-
decreasing, or �0(v) � 1.

Note that F1 is less disperse than F2 if F1 is a scaled down version of F2. More
generally, �x F1 and write F2 as F2(v) = F (v=v2), where F is some distribution func-
tion with support [0; 1]. Then, if F2 is scaled up su¢ ciently much (v2 is su¢ ciently

7See Shaked and Shantikumar (2007) for a review of the star order and other stochastic orders
of spread, such as the dispersive order (de�ned below). See Kirkegaard (2011a) for an economic
interpretation of these orders. Hopkins (2007) considers �rst price auctions in which one bidder�s
distribution is more dispersed than that of his rival, but where �rst order stochastic dominance
does not apply. See Lu (2010) for another use of the dispersive order in an auction design problem.

8This model is isomorphic to one in which bidders draw valuations from the same distribution
but have di¤erent constant marginal costs of bidding.
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large) it must be the case that F1 is smaller than F2 in the dispersive order. In a
sense, dispersion is almost automatic if the asymmetry is su¢ ciently large.
In a standard all-pay auction bidder i must decide whether to participate in the

auction, and, if so, which non-negative bid, bi, to submit, i = 1; 2. The bidder with
the highest bid would then be the winner. Here, however, bidders receive di¤erential
treatment. It is convenient to think of bidder i as accumulating a �score�, si. If
bidder i bids b, his score is si = ai + rib, where ai � 0, ri > 0. Hence, bidder i
must decide whether to participate, and, if so, which score to aim for. The winner
is the bidder with the highest score. To ensure the existence of an equilibrium, it
is assumed that bidder j wins if ai > aj and s1 = s2 = ai. The tie-breaking rule is
inconsequential in all other cases.
Bidder 1 is said to have a head start if a � a1 � a2 > 0, in which case he wins

the auction if both bidders bid zero. He is said to be handicapped if r � r1=r2 < 1.
Turning to payo¤s, bidders are risk neutral and the true cost of a bid of b is

b. These assumptions are standard in the auction literature, but a more general
treatment would allow for risk aversion and costs that are non-linear in the bid. The
cost of obtaining a score of s � ai for bidder i is

ci(s) =
s� ai
ri

: (1)

2.1 Equilibrium allocation

Amann and Leininger (1996) characterize the equilibrium and equilibrium allocation
of the all-pay auction without head starts and handicaps. It is straightforward to
extend the characterization to allow for head starts and handicaps.
To begin, let k(v) denote the function that is implicitly de�ned byZ v1

k(v)

f1(x)

x
dx = r

Z v2

v

f2(x)

x
dx (2)

for v 2 [0; v2]. Note that k(v) is strictly increasing and satis�es k(v2) = v1. Moreover,
the right and left hand sides both converge to 1 as v and k, respectively, converge
to zero. Hence, k(0) = 0 regardless of r. As described in Section 3, this feature of
the model simpli�es the analysis somewhat.
In equilibrium, bidder 1 with type k(v) obtains the same score as bidder 2 with

type v in the absence of head starts. The expression in (2) is easily derived by
following the steps in Amann and Leininger (1996), and incorporating handicaps.
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The details of how the equilibrium candidate is constructed are therefore omitted (it
is veri�ed below that there is no incentive to deviate).9

The function k(v) does not depend on a1 or a2. However, it is only valid for those
types that submit strictly positive bids. The next step is to identify the types that
do not submit strictly positive bids. For the sake of exposition, assume that bidder
1 is the bidder with the head start, a � 0. Then, bidder 2 may decide to simply bid
zero, or equivalently, to not participate in the auction at all. Similarly, bidder 1 may
decide to rely on the head start only, and just bid zero (score a1).
If bidder 2 bids, he must submit a bid of at least c2(a1), since any score below

a1 will be unsuccessful. It will never be pro�table for bidder 2 to participate if
c2(a1) � v2. In the following it is assumed that c2(a1) 2 [0; v2). Solving

vF1(k(v))� c2(a1) = 0; (3)

yields the critical type of bidder 2 who is indi¤erent between staying out of the
auction and entering the auction with a score of a1. Let the solution be denoted by
vc2, and de�ne v

c
1 � k(vc2).

The main properties of the equilibrium allocation can now be identi�ed. In (v2; v1)
space, Figure 1 depicts v1 = k(v2) as well as the level curve on which v2F1(v1) is
constant and equal to c2(a1). The former is increasing, by (2), while the latter is
decreasing. The intersection of the two satis�es (3) and thus de�nes vc1 and v

c
2.

In equilibrium, bidder 2 stays out of the auction if his type is strictly below vc2,
and enters with a bid of c2(a1) (score of a1) if his type is precisely vc2. If his type is
higher, he enters the auction and obtains a score equal to that obtained by bidder 1
with type k(v). Bidder 1 enters the auction regardless of his type, but he submits a
bid of zero, thereby obtaining a score of a1, if his type is vc1, or below. If his type is
higher he achieves a score to rival that of bidder 2 with type k�1(v). In summary,
bidder 2 wins only if his type is above vc2 and bidder 1�s type is below k(v). Bidder
1 wins otherwise.
For completeness, the strategies that support the allocation outlined above are

described in the following Proposition, in which it is also proven that they form an
equilibrium. However, the analysis to follow is framed in terms of the equilibrium
allocation (as described in Figure 1) rather than equilibrium scoring strategies (as
described in Proposition 1). An earlier version of the paper describes how strategies
change with head starts and handicaps.

9Brie�y, the �rst order conditions produce a system of di¤erential equations. This system is
autonomous, due to the linearity assumptions (risk neutrality, linear costs). Using this property,
Amann and Leininger (1996) show that (2) is the unique solution to the system of di¤erential
equations with the appropriate boundary condition. The boundary condition is k(v2) = v1; both
bidders score the same if they have their highest respective types. See Kirkegaard (2008) for details.
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v2

v1

vc1

vc2

k(v)

v2F1(v1)� c2(a1) = 0

Figure 1: The equilibrium allocation. Bidder 2 wins below k(v), to the right of vc2.
Bidder 1 wins everywhere else.

Proposition 1 Assume that bidder 1 has a head start and that c2(a1) 2 [0; v2).
Then,

s1(v) =

�
a1 if v 2 [0; vc1]
a1 +

R v
vc1
r2k

�1(x)f1(x)dx otherwise

s2(v) =

�
0 if v 2 [0; vc2)
a1 +

R v
vc2
r1k(x)f2(x)dx otherwise

form equilibrium scoring strategies for bidder 1 and bidder 2, respectively.

Proof. See the Appendix.
Note that k(v) is decreasing in r, by (2). That is, as expected bidder 2 will win

less often when his handicap increases. For a �xed value of r, the following Lemma
�quanti�es�k by comparing it to �. Recall that r� < 1 if r = 1.

Lemma 1 If r� < 1 then k(v) > �(v) for all v 2 (0; v2). If r� > 1 then k(v) < �(v)
for all v 2 (0; v2).

Proof. See the Appendix.
Lemma 1 implies that bidder 2 wins with a probability that exceeds his rank,

F1(k(v)) > F1(�(v)) = F2(v), unless r is large. Thus, in the standard all-pay auction,
bidder 2 is ex ante more likely to win the auction than bidder 1.
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As a starting point for the analysis of optimal head starts and handicaps, observe
that the allocation can be manipulated by manipulating the two curves in Figure
1. First, k can be made to move down by increasing r = r1=r2. Second, the �level
curve� can be moved to the right by increasing c2(a1) = (a1 � a2) =r2. Note that
c2(a1) measures the cost for bidder 2 of nullifying bidder 1�s head start; it measures
bidder 1�s head start in �real�terms. In summary, the �relative handicap�, r, and
the �real�head start, c2(a1), are all that matters for the equilibrium allocation. For
convenience, de�ne a � c2(a1) as bidder 1�s real head start.

3 Revenue maximization

In most of the paper it will be assumed that a and r are chosen with the objective
of maximizing total expenditures. This is a reasonable objective if the designer or
seller is the recipient of the expenditures, in which case it is equivalent to revenue
maximization (the seller is assumed to put zero value on the prize).
The results in this paper are best understood by appealing to mechanism design.

To begin, let qi(v) denote bidder i�s equilibrium probability of winning if his type is
v, i = 1; 2. When bidder 1 is given a head start these are

q1(v) =

�
F2(v

c
2) if v 2 [0; vc1)

F2(k
�1(v)) otherwise

; (4)

and

q2(v) =

�
0 if v 2 [0; vc2)
F1(k(v)) otherwise

; (5)

respectively. Myerson (1981) de�nes Ji(v) = v�hi(v) as bidder i�s virtual valuation.
With this key term, he then proves that ex ante expected gross surplus can be
decomposed into ex ante expected expenditures and ex ante expected net surplus,Z vi

0

vqi(v)fi(v)dv| {z }
bidder i�s gross surplus

=

Z vi

0

Ji(v)qi(v)fi(v)dv| {z }
bidder i�s expenditures

+

Z vi

0

hi(v)qi(v)fi(v)dv| {z }
bidder i�s net surplus

:10 (6)

10This formulation is accurate only if bidders earn zero payo¤ if their type is the lowest possible.
This is the case in all the mechanisms studied in this paper. The reason is the assumption that
the lowest possible type is zero. Without this assumption, the weaker bidder would stay out of the
standard all-pay auction with positive probability, and the strong bidder would earn excessive rent
if his type is the lowest possible. Then, there is an additional reason to disadvantage the strong
bidder, namely to eliminate some of his rent. To rule out this confounding incentive and simplify
the exposition I impose the assumption that the lowest type is zero.
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It follows that the expected total expenditures in the auction is,

ER(a; r) =

Z v1

0

J1(v)q1(v)f1(v)dv +

Z v2

0

J2(v)q2(v)f2(v)dv; (7)

which equals the expected value of the winner�s virtual valuation.
By assumption, Ji(v) is strictly increasing. Let v�i denote the unique value of v for

which Ji(v) = 0, i = 1; 2. Let �(v) denote the strictly increasing function satisfying
J1(�) = J2(v), whenever it exists. Since f1(0) > f2(0) implies that J1(0) > J2(0), it
must be the case that �(v) = 0 for some v > 0. Moreover, since J2(v2) = v2 > v1 =
J1(v1), �(v) = v1 for some v < v2.
As a point of comparison to the all-pay auction, consider the revenue maximizing

mechanism (among mechanism where the good is sold with probability one). In an
optimal mechanism bidder 1 should win if his type exceeds � when his rival has type
v, in which case J1 > J2. Otherwise he should lose. Such a rule maximizes the
expected value of the virtual valuation of the winner by ensuring that the winner is
the bidder with the highest virtual valuation. Bulow and Roberts (1989) and Bulow
and Klemperer (1996) discuss the similarities to optimal monopoly pricing.
Figure 2 compares an optimal mechanism and the standard all-pay auction. The

standard all-pay auction is not optimal; k(v) does not coincide with �(v). In particu-
lar, bidder 2 wins more often than is optimal �near the bottom�(when both bidders
have low types), but not often enough �near the top�(when both have high types).
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Figure 2: The optimal mechanism (�(v)) versus the all-pay auction (k(v)).
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At the top, virtual valuations coincide with types, or Ji(vi) = vi. This also occurs
in the standard monopoly pricing problem, where marginal revenue on the �rst unit
coincides with consumers�value of that unit. Since J2(v2) = v2 > v1 = J1(v2), the
strong bidder should win with probability one in an optimal mechanism for a mass
of types close to v2. However, this is inconsistent with equilibrium behavior in most
auctions, including the all-pay auction, since the weak bidder has an incentive to
overbid the mass of types. Indeed, k(v) is not �at at the top. A similar problem
arises at the bottom, where the weak bidder is supposed to outbid a mass of the strong
bidder�s low types. This would require the strong bidder to refrain from bidding if
his type is su¢ ciently low. However, the strong bidder, who faces relatively weak
competition, participates with probability one in equilibrium.
Now, the purpose of changing a and r is to manipulating the allocation to bring it

closer to the optimal allocation. However, these a¢ ne manipulations of bids cannot
implement the optimal auction. For example, k is not horizontal at the top. The
focus on linear scoring functions is thus not without loss of generality. On the other
hand, linear scoring rules are perhaps easier to understand and use in the real world.
See Nti (2004) for a discussion of linear scoring rules under complete information.
Sections 4 and 5, respectively, examine head starts and handicaps in isolation.

Section 6 considers the simultaneous use of head starts and handicaps. Unfortunately,
the three scenarios present di¤erent technical challenges and for that reason require
three distinct methods of proof. As a consequence, it is necessary to impose di¤erent
assumptions in each of the three sections (Section 4 being the only section where the
analysis is completely general). In Section 5 and 6, assumptions are thus imposed
on the �shape�of the asymmetry �or more precisely on the shape of �(v)=v �and
on the �size�of the asymmetry. The purpose of Section 7 is to bring it all together
by presenting environments that satisfy all the various assumptions simultaneously
and by so doing uni�es the analysis. Section 8 considers two environments in which
some of the assumptions imposed so far are violated.

4 Head starts

In this subsection, r is assumed to be �xed.
De�ne � i(v) as the type (if any) that satis�es

E [Ji(x)jx � � i(v)] = Jj(v); (8)

where

E [Ji(x)jx � � i(v)] =
Z � i(v)

0

Ji(x)
fi(x)

Fi(� i(v))
dx;
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for i; j = 1; 2, i 6= j. For example, if bidder 1 receives a head start, E [J1(x)jx � vc1]
measures the expected virtual valuation among the types that score a1. The signi�-
cance of E [J1(x)jx � vc1] is precisely that it summarizes this set of types, [0; vc1].
Since the left hand side of (8) is zero when � i = vi it must be the case that

� i(v
�
j ) = vi. Note also that � 1 and � coincide on the horizontal axis, but � 1(v) > �(v)

whenever � 1 is de�ned and � > 0. Thus, � 1 and k must cross. Turning to � 2, it
can also be veri�ed that � 2(v) > ��1(v) whenever both are de�ned. The following
Lemma �quanti�es�� 2 by comparing it to �, which turns out to be relevant once a
head start to the strong bidder is contemplated (see Theorem 2, below). Figure 2
illustrates � 1 and the inverse of � 2.

Lemma 2 � > ��12 whenever ��12 is de�ned.

Proof. See the Appendix.
Compared to the optimal mechanism, one of the drawbacks of the all-pay auction

is that bidder 2 wins too often when types are small. A head start to bidder 1 recti�es
this problem. Hence, the allocation will move closer to what is optimal.

Theorem 1 Regardless of r, it is always optimal to employ a head start. In partic-
ular, regardless of r, it is pro�table to give bidder 1 a head start. When it is optimal
to give bidder 1 a head start, then the optimal head start is such that � 1(vc2) = k(v

c
2).

Proof. Given (7), observe that

@ER(a; r)

@a
= f2(v

c
2)F1(v

c
1)
@vc2
@a

�Z vc1

0

J1(v)
f1(v)

F1(vc1)
dv � J2(vc2)

�
; (9)

the sign of which is determined by the term in parenthesis (vc2 is increasing in a). As
a approaches 0, vc1 and v

c
2 approaches 0 and this term converges to

� 1

f1(0)
+

1

f2(0)
;

by L�Hôpital�s rule. This is positive, by assumption. Hence, ER(a; r) is strictly
increasing in a when a is small. Thus, it is optimal to use a head start since a head
start to the weak bidder, in particular, strictly increases expected revenue. The �rst
order condition is satis�ed when the term in parenthesis is zero, which occurs if and
only if vc1 = � 1(v

c
2).

Consider a marginal increase in bidder 1�s head start. If the allocation changes,
it is because bidder 2 won before, but now loses. Bidder 2�s type in this event is
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vc2, while bidder 1 has a type below k(vc2) � vc1. Thus, the virtual valuation of
the winner changes from J2(v

c
2) to E [J1(x)jx � k(vc2)], in expectation. The optimal

head start ensures the marginal loss and gain are equated, which necessitates that
� 1(v

c
2) = k(v

c
2). In Figure 2, the intersection of � 1 and k (the point A) thus determines

vc2 and by extension a. Conditions under which ER(a; r) is single-peaked in a are
discussed in Section 7. This is the case when � 1 and k intersect only once.
Theorem 1 does not claim that a head start to the strong bidder is not pro�table

or even optimal. There are two points in Figure 2 where the �rst order conditions
are satis�ed for an optimal head start to bidder 2. Point B, which would require
the smallest head start, is a local minimum, while point C is a local maximum.
Thus, if a head start to bidder 2 is pro�table, it must be a large head start. In
contrast, any small head start to bidder 1 is pro�table. Arguably, the seller needs
less information about the distribution functions to pro�t from a head start to the
weak bidder. Moreover, as the next result shows, a head start to the strong bidder
can be pro�table only if he is handicapped a lot. Thus, it can never be optimal to
give the strong bidder a head start in the absence of a handicap. The intuition is that
without a handicap the strong bidder is already winning too often at the bottom.
Giving him a head start would only make matters worse.

Theorem 2 Assume that r� < 1 (e.g. r = 1). Then, any head start to the strong
bidder lowers expected revenue.

Proof. By Lemma 1, k(v) > �(v) for all v 2 (0; v2), while Lemma 2 states that
�(v) > ��12 (v), whenever the latter is de�ned. Thus, k(v) > ��12 (v), meaning that
the two never intersect (to get a crossing, as in Figure 2, the strong bidder must
necessarily be severely handicapped). Switching the roles of bidders 1 and 2 in (9)
then proves that expected revenue is decreasing in bidder 2�s head start.

5 Handicaps

In this subsection, it is assumed that there is no head start, or a = 0. Hence, changes
in r1 and r2 do not impact the real head start (a = 0 for all r1 and r2).
Bidder 1 wins more often, regardless of his type, when r increases (that is, k(v)

moves down). This moves the allocation closer to the optimal allocation if his type
is low, but farther away if his type is high. Hence, there is a trade-o¤.
Clark and Riis (2000) have proven that it is optimal to handicap the strong bidder

(r > 1) when types are drawn from di¤erent uniform distributions. In general, how-
ever, the trade-o¤ makes it di¢ cult to predict which bidder should be handicapped.
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Moreover, the approach used by Clark and Riis does not generalize. In short, they
rely on closed-form expressions of bidding strategies that can be obtained in the uni-
form case, but not in the general case. Thus, a di¤erent method of proof is required.
In this section, Clark and Riis� (2000) result is generalized in two directions.

First, their result is shown to hold whenever F1 is a scaled down version of F2.
Recall that Clark and Riis� (2000) uniform model is a special case. Second, the
result also holds when the asymmetry is �su¢ ciently large�, regardless of the shape
of the asymmetry. Kirkegaard (2011a) recently proved that the �rst-price auction is
more pro�table than the second-price auction in these models. As in that paper, the
proofs in the current paper are based on mechanism design. Section 8 provides an
example in which it is optimal to handicap the weak bidder.

5.1 F1 is a scaled down version of F2
Assume F1 is a scaled down version of F2. Let

� = r
v1
v2
; (10)

which re�ects the signi�cance of the handicap once the relative strength of the two
bidders is taken into account. Since � = � = v1=v2 in this model, Lemma 1 implies
that a measure of symmetry is restored to the game if � = 1 (or r = v2=v1 > 1) since
in this case bidders with the same rank win with the same probability, k(v) = �(v).
It is convenient to think of � as the choice variable, rather than r.
Let EPi(�) denote bidder i�s ex ante expected payment, i = 1; 2. The proof of

Lemma 3 establishes that EPi(�) is separable, such that it can be written EPi(�) =
viEP

s
i (�), where vi captures the strength of bidder i and EP

s
i (�) is a �scale-adjusted�

payment that �lters out the bidder�s strength. Hence, EP s1 (1) = EP
s
2 (1) because, as

mentioned, bidders with the same rank win with the same probability when � = 1;
adjusting for their scale, the handicap has made bidders symmetric. The next Lemma
describes other important features of the scale-adjusted payments.

Lemma 3 Assume that F1 is a scaled down version of F2, and a = 0. Then,
EP s02 (1) = �EP s01 (1) > 0. Moreover, EP s02 (�) > 0 for all � 2 (0; 1] and EP s01 (�) < 0
for all � 2 [1;1).

Proof. See the Appendix.
Expected revenue is

ER(�) = v1EP
s
1 (�) + v2EP

s
2 (�): (11)

The main result of this section now follows easily from Lemma 3.
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Theorem 3 Assume that F1 is a scaled down version of F2, and a = 0. Then,expected
revenue is maximized at some � > 1 (or, equivalently, r > v2

v1
> 1).

Proof. See the Appendix.
Theorem 3 rules out that ER(�) is maximized at any � � 1. However, it is not

claimed that there is a unique global maximum.
The magnitude of the optimal handicap is striking. Since � > 1, bidder 2�s

winning probability now falls below his rank, or k(v) < �(v). Hence, bidder 2�s
ex ante winning probability is now less than 1

2
. In a sense, the weak bidder is

overcompensated. See Section 9 for an interpretation in the context of a¢ rmative
action and Section 5.3 for a comparison to the complete information model.
From (11), the seller is maximizing a weighted average of the bidders� scale-

adjusted payments. Since the weight on bidder 2 is the largest, the seller is willing
to sacri�ce some revenue from bidder 1 to more e¤ectively milk bidder 2.
Figure 3 depicts the scale-adjusted payments in the uniform model. Recall that

r = 1 is equivalent to � = v1
v2
< 1, whereas the optimal value of � is larger than

one, but to the left of the peak of EP s2 . Clearly, bidder 2�s expected payment
increases when he is handicapped optimally. On the other hand, bidder 1�s expected
payment may increase or decrease, depending on how close to the peak of EP s1
he would be without a handicap in place. This type of argument holds whenever
EP s2 (�) < EP

s
2 (1) for all � 2 (0; 1), which is guaranteed to hold, by Lemma 3.

EP
EP

ρ1

2
s

1
s

Figure 3: Scale-adjusted payments in the uniform model.

In conclusion, the expected payments of the handicapped bidder increases, while
the change in the favored bidder�s payment depends on how heterogeneous the bid-
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ders are.11 With these observations in mind, it is now possible to consider other
types of asymmetry as well.

5.2 Large asymmetries

Figure 3 indicates that if the asymmetry is su¢ ciently large in the uniform model,
then the expected payment of both bidders would decline if the weak bidder is hand-
icapped. Thus, it is optimal to handicap the strong bidder. This argument turns out
to extend beyond the model in Theorem 3.

Theorem 4 Assume minx f1(x) � 2maxx f2(x). Then, ER(0; r) is strictly increas-
ing in r for all r 2 (0; 1]. Hence, it is optimal to handicap the strong bidder.12

In the uniform model, the condition in Theorem 4 is satis�ed if v2 � 2v1. Outside
the uniform model, v2 > 2v1 is necessary but not su¢ cient. Although the asymmetry
needed to invoke Theorem 4 may seem large, it should be noted that the method
of proof is very demanding. Speci�cally, the derivative of each bidder�s expected
payment with respect to r is written as the integral of a function which is shown to
be positive for all realizations, as long as r 2 (0; 1].
The condition in Theorem 4 implies that f1(x) � f2(y) for all x 2 [0; v1] and

y 2 [0; v2]. Hence, �0(v) = f2(v)=f1(�(v)) � 1. Thus, F1 is less disperse than F2.

5.3 Complete information

Fu (2006) examines the complete information model, which as mentioned earlier can
be thought of as a special case of the model in Section 5.1. The di¤erence is that the
latter assumes densities are strictly positive everywhere. This di¤erence is enough
to change the results in important ways.
In Fu�s (2006) model, both bidders maximize their expected payment when � = 1.

Lemma 3 clearly states that this property does not hold in the incomplete information
model. Thus, � = 1 is optimal in the complete information model, but not in the

11It can be shown that both bidders have types that bid more aggressively with the handicap, and
types that bid less aggressively. Nevertheless, although Clark and Riis (2000) examine aggregate
revenue only, they claim that in their model it is pro�table to handicap the strong bidder because
it encourages the favored (weak) bidder to bid more aggressively. However, it is now clear that the
expected payment from the favored bidder may decline. Similarly, an optimal head start increases
the disadvantaged bidder�s expected payment but decreases the favored bidder�s expected payment.

12Moreover, if the strong bidder is handicapped only slightly (so that r remains close to one),
the expected payment of both bidders increase.

18



incomplete information model. The addition of incomplete information means that
the strong bidder must be handicapped even more severely (Theorem 3). While the
two bidders would win equally often in the complete information model with the
optimal handicap, the weak bidder wins more often when information is incomplete.
Section 8 describes two other conclusions that can be obtained in an incomplete

information model, but never in a complete information model.

6 Head starts and handicaps

Theorems 1 and 2 imply that the weak bidder should be given a head start in the
absence of a handicap. However, Section 5 suggests that it may be optimal to severely
handicap the strong bidder, while Section 4 in turn suggests that large handicaps
should perhaps be accompanied by a head start to the strong bidder. So, how should
the seller optimally combine the two instruments?
The next result states that it is the weak bidder who will receive a head start

when a and r are determined jointly. The proof is by contradiction. In particular,
it is shown that if a �locally optimal�head start is given to the strong bidder, then
expected revenue can be improved further by lowering r, thus contradicting that the
original combination of head starts and handicaps is optimal. Since this method
of proof relies on studying the e¤ects of changing r, some of the challenges that
complicated the previous section once again come into play. However, if the problem
is su¢ ciently �regular�, these challenges can be circumvented. Below, two sets of
conditions on (F1; F2) are identi�ed for which the result holds.

Theorem 5 The revenue-maximizing combination of head starts and handicaps in-
volves a head start to the weak bidder (a > 0) if either condition (i) or (ii) is satis�ed:

(i) �(v) and k(v) cross exactly once for all r such that r� � 1.

(ii) �(v)
v
is non-decreasing and

R v�2
0
J2(x)

f2(x)
F2(v�2)

dx � J1(0).

Proof. See the Appendix.
Note that � and k depend only on F1 and F2, for any given r. Thus, condition (i)

is a condition on the primitives of the game. It is satis�ed in the uniform model.13

13The domain of � is a subset of (0; v2), while the domain of k is [0; v2]. Both are increasing and
range from 0 to v1. Hence, the two functions must cross. In the uniform model, � is linear whereas
k is concave, linear, or convex, depending on the size of r. Hence, � and k cross exactly once. For
similar reasons, the assumption in Theorem 6, below, is also satis�ed in the uniform model.
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Turning to condition (ii), the �rst part states that F2 is stochastically smaller
than F1 in the star order. Thus, it is an assumption on the �shape�of the asymmetry.
The role of this assumption is to enable a comparison between (1) �(v) and k(v) when
r is high and (2) �(v) and �(v) when v is high. See the Appendix for details.
The second part of condition (ii) concerns the �size� of the asymmetry. The

strong bidder must be su¢ ciently stronger than the weak bidder. For instance, if F1
is a scaled down version of F2, the assumption can be written

v2
v1
f(0)

v�(1� F (v�))
F (v�)

� 1; (12)

where v� = argmaxx(1�F (x)) is independent of v1 and v2. Clearly, this assumption
is satis�ed when v2 is su¢ ciently large compared to v1. For the uniform model, the
assumption is satis�ed if v2 � 2v1, as in Theorem 4.
When a head start is used to bring the allocation near the bottom closer to what

is optimal, there is less of an incentive to handicap the strong bidder. Instead, it
may be better to use the handicap to bring the allocation closer to what is optimal
near the top. Recall that the problem near the top is that the strong bidder does not
win often enough. Handicapping the weak addresses this problem. The next result
shows that the weak bidder is either given a large head start and a handicap, or the
double advantage of a moderate head start and a handicapped opponent. A �large�
or �moderate�head start refers to one that exceeds or falls below, respectively, the
head start the weak bidder would get without handicaps (r = 1). Let a� denote the
optimal real head start without a handicap, and let a�� and r�� denote the optimal
real head start and handicap, respectively, when the two are determined jointly.
Once again, a regularity assumption is needed. The assumption is that expected

revenue is single-peaked in a when r = 1. The role of the assumption is to rule out
large jumps in a when r is changed a bit. The assumption is satis�ed in the uniform
model, for example, and discussed further in the next section.

Theorem 6 Assume that the revenue-maximizing combination of head starts and
handicaps involves a head start to the weak bidder. Assume also that ER(a; 1) is
single-peaked in a. Then, either (i) a�� > a� and r�� < 1 or (ii) 0 < a�� � a� and
r�� � 1.

Proof. The �rst assumption implies that (vc2; v
c
1) is determined by the intersection

of k and � 1. The second assumption is equivalent to the assumption that k(v) and
� 1(v) intersect exactly once when r = 1. Hence, if r < 1 (k shifts up), k must
intersect � 1 to the right of the intersection for r = 1. Consequently, if r < 1 then vc2
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increases, which necessitates a�� > a�. A similar argument proves that vc2 decreases
if r � 1, which necessitates a�� � a�.
The intuition behind Theorem 6 is explained further in the next section. This

section concludes with an example.

Example 1: Consider the uniform model; Fi(v) = v
vi
, v 2 [0; vi], i = 1; 2; with

v2 > v1 = 1. By Theorems 1 and 2, a� > 0 if the seller can use head starts only.
By Theorem 3, r� > 1 if the seller can use handicaps only. As explained in the next
section, the �rst part of Theorem 6 is more likely to apply the larger the asymmetry
is. For example, if the seller can use both instruments then part (ii) of Theorem
5 holds if v2 = 2, but (i) holds if v2 increases to v2 = 3.14 In the latter case, the
weak bidder is given a head start and a handicap. When v2 = 3, the use of the
optimal handicap (and no head start) increases expected revenue by 42.5%. On the
other hand, the use of the optimal head start (and no handicap) increases expected
revenue by 58.8%. With both instruments, expected revenue increases only a bit
more, speci�cally by 59.1% in total. Thus, the head start is responsible for most of
the increase. �

7 Beyond the uniform model

A variety of assumptions were imposed in Sections 5 and 6, as the need arose. The
purpose of this section is to describe environments in which the results can be uni�ed.
Recall �rst the properties of the uniform model, illustrated in Example 1.

Corollary 1 The uniform model has the following properties:

1. If only one instrument can be used, then it is optimal to favor the weak bidder.

2. If both instruments can be used, then it is optimal to give the weak bidder a
head start. In addition, either (i) a�� > a� and r�� < 1 or (ii) 0 < a�� � a�

and r�� � 1.

Proof. The �rst part follows directly from Theorems 1 �3. The second part invokes
Theorems 5 and 6. As explained in the text, Theorems 5 and 6 apply to the uniform
model because k intersects � and � 1 precisely once, regardless of r.
The question is now whether the properties in Corollary 1 extend beyond the

uniform model. In short, I will argue that this is the case whenever the asymmetry

14The details of the examples in the paper are omitted, but are available on request.
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between bidders is �su¢ ciently large�. Moreover, in some environments it is possible
to quantify the size of the asymmetry that is required.
To begin, any given distribution function F2 can be written as

F2(v) = F

�
v

v2

�
; v 2 [0; v2] ; (13)

where F is some, appropriately chosen, distribution function with support [0; 1].
Now, �x a distribution F instead, and consider the class of distribution functions
that can be obtained from F by scaling it, as in (13).15 Then, holding F1 �xed, it
turns out that ER(a; 1) is single-peaked in a if F2 is obtained by �scaling up�F
su¢ ciently much (that is, if v2 is su¢ ciently large). Roughly speaking, the problem
is automatically well-behaved if the stakes are high enough for the strong bidder.16

Lemma 4 Let F2(v) = F
�
v
v2

�
; v 2 [0; v2]. Then, ER(a; 1) is single-peaked in a,

a � 0, if v2 is su¢ ciently large.

Proof. See the Appendix.
Lemma 4 and Theorems 1 and 2 imply that there is a unique optimal head start

when neither bidder is handicapped and the asymmetry is su¢ ciently large. It is
bidder 1 who is given the head start. However, the primary use of Lemma 4 is that
it permits Theorem 6 to be invoked. To prove Corollary 1, Theorem 3 and the �rst
part of Theorem 5 were used. However, neither of these can necessarily be relied
upon in the general case. Thus, the intention is to use Theorem 4 and the second
part of Theorem 5 in the attempt to generalize Corollary 1.
Clearly, maxx f2(x) = maxx f

�
x
v2

�
=v2 is decreasing in v2. Thus, the condition

in Theorem 4 is satis�ed when v2 is large. As for the second part of Theorem 5,
the inequality in the second part of the condition is also easier to satisfy the larger
v2 is. Finally, if �(v)=v is non-decreasing for some (F1; F2) pair, then it is also non-
decreasing if F2 is re-scaled (as proven below). Corollary 1 can now be generalized.

Corollary 2 Let F2(v) = F
�
v
v2

�
; v 2 [0; v2]. Assume F is smaller than F1 in the

star order. Then, the contest has the same properties as in the uniform model when
v2 is su¢ ciently large.

15Assume F has all the properties described in Section 2 (positive and �nite density, increasing
hazard rate). Note that F2 �rst order stochastically dominates F1 if v2 is large enough.

16Figure 2 provides some intuition. As v2 increases, k becomes �atter. In contrast, the slopes of
�1 and � are bounded below. Thus, k intersects �1 and � precisely once when v2 is large.
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Proof. The �rst part follows from Theorems 1, 2, and 4. To use the second part of
Theorem 5, note that

d

dv

�(v)

v
=
f2(v)v � f1(�(v))�(v)

f1(�(v))v2
=
f
�
v
v2

�
v
v2
� f1(�(v))�(v)

f1(�(v))v2
: (14)

By assumption, (14) is non-negative for all v 2 [0; v2] when v2 = 1. Since F
�
v
v2

�
=

F2(v) = F1(�), � depends only on the ratio v=v2 2 [0; 1]. Thus, the numerator in
(14) is independent of v2 when it is evaluated at a constant rank (or v=v2 ratio). In
other words, the sign of (14) is una¤ected by the change in v2 and so �(v)=v remains
non-decreasing when F2 is rescaled. Thus, Theorem 5 applies when v2 is su¢ ciently
large. Then, Lemma 4 can be used to invoke Theorem 6.
A special case is examined next. Start with the benchmark uniform model. Then,

keeping the supports �xed, one way to increase the asymmetry is by moving the
two distributions away from each other by �curving� them in opposite directions,
making F1 concave and F2 convex. Analytically, the advantage is that the size of the
asymmetry required to invoke Theorems 4 �6 can be quanti�ed.

Corollary 3 Assume F1 is concave and F2 is convex. Then, the contest has the
same properties as in the uniform model when

f1(v1)

2
� f2(v2) and

v2 � v1
v21

� f2(v2).17

Proof. See the Appendix.
To appreciate the advantages of handicapping the weak bidder while simultane-

ously giving him a head start, note that in the limit as r ! 0 the weak bidder is
handicapped so much that he will not submit positive bids. Thus, he will score a1.
Then, from the strong bidder�s point of view, a functions as a take-it-or-leave-it price.
The strong bidder would then win if his type is above a, and lose otherwise. If a is
chosen judiciously, this mechanism maximizes the payment that is obtainable from
the strong bidder. If he is very strong compared to the weak bidder, it is intuitive
that it is worthwhile sacri�cing revenue on the weak bidder (who pays nothing in the
limiting case) to get more out of the strong bidder.18

17The last condition can be replaced by the weaker condition that (v2 � v1) =v21 � f2(v
�
2). In

the uniform model, the second condition is automatically satis�ed if the �rst condition is satis�ed.
More generally, if the two conditions are satis�ed for some pair of distributions, then they are also
satis�ed if F2 is scaled up further.

18For instance, if F1 is a scaled down version of F2, (11) implies that only the strong bidder�s
payment is relevant as v1 ! 0 or v2 !1.
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As a �nal example, consider the case where v2 = v2 with probability one (F2 is
degenerate). Then, a�� = v2, r�� = 0. Since r�� = 0 the weak bidder has no incentive
to bid. It is then optimal for the strong bidder to bid a�� = v2 and win with probabil-
ity one (given the tie-breaking rule). Here, social surplus is maximized, but bidders
obtain zero payo¤. Hence, there is no better mechanism from the seller�s point of
view. Of course, the complete information model (in which F1 is also degenerate)
is a special case. Thus, the complete information model yields the same qualitative
conclusion regarding the simultaneous use of both instruments as the incomplete
information model with large asymmetries. However, Example 1 shows that things
are di¤erent when the asymmetry is small.

8 Irregular distributions

This section considers two environments that violate the regularity assumptions im-
posed so far. In one, it is pro�table to handicap the weak bidder in an asymmetric
contest. In the other, it is pro�table to give a head start to a random bidder in a
symmetric contest.
Note that neither conclusion could be obtained in a complete-information model.

It follows from Fu (2006) that handicapping the weak bidder in a complete informa-
tion model unambiguously decreases expected revenue. If bidders are symmetric and
information is complete, an unbiased all-pay auction maximizes expected revenue.
Thus, a head start to either bidder can never be optimal. This result can also be
veri�ed more directly by using the equilibrium characterization in Konrad (2002).

8.1 The weak bidder is potentially uninterested

Inspired by an example in Maskin and Riley (2000), consider the possibility that the
weak bidder may not be interested in the prize at all.

De�nition 4 Bidder 1 is potentially uninterested if there exists some � 2 (0; 1) such
that

F1(v) = 1� �+ �F2(v), v 2 [0; v2] :

Maskin and Riley (2000) prove that the second-price auction is more pro�table
than the �rst-price auction in a slightly more general model. If bidder 1 is potentially
uninterested, then he is believed to be like bidder 2 with probability �, but to be
uninterested in the prize with probability 1 � �. This model is di¤erent from the
model described in Section 2, due to the mass point (1 � �), the coincidence of v1
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and v2, and the fact that f1(0) < f2(0). It is readily checked that J1(v) = J2(v), or
�(v) = v, for all v 2 (0; v2]. This is the critical feature of this class of models.
The derivation of equilibrium in Section 2 remains valid, meaning thatZ v2

k(v)

f2(x)

x
dx =

r

�

Z v2

v

f2(x)

x
dx: (15)

When r = 1, k(v) < v for v 2 (0; v2). Thus, in the absence of head starts and
handicaps, bidder 1 is more aggressive than bidder 2 for comparable types. However,
this outcome is unequivocally negative in the current model, since it implies that
k(v) < v = �(v), for all v 2 (0; v2). Hence, bidder 1 wins too often compared to
what is optimal, regardless of his type. However, k(v) = v = �(v) when r = � < 1.
Handicapping the weak bidder involves no trade-o¤. Incidentally, such a handicap is
e¢ cient as well.

Proposition 2 Assume that a = 0. The seller pro�ts from handicapping the weak
bidder (r < 1) if he is potentially uninterested. The optimal value of r is r� = �.

Proof. In the text.

8.2 A symmetric model

Assume now that the two bidders are symmetric. They both draw types from some
distribution function F , which is assumed to have no mass points. However, contrary
to the assumption in Section 2, the virtual valuation is not monotonic. In particular,
assume that J 0(0) < 0. In such a case, Myerson (1981) prescribes �ironing�virtual
valuations by using a non-deterministic mechanism. However, as Bulow and Roberts
(1989) note, ironing can also be achieved in a symmetric model by treating bidders
in an asymmetric, but deterministic, fashion. For this reason, it will be pro�table to
single out some random bidder for a small head start before bidding commences.

Proposition 3 Assume bidders are symmetric and J 0(0) < 0. When r = 1, it is
pro�table to give some random bidder a small head start.

Proof. Let bidder 1 be the bene�ciary of the head start. Since bidders are symmetric
and r = 1, vc1 = v

c
2 = v

c. By (9),

@ER(a; r)

@a
= f(vc)F (vc)

@vc

@a

�Z vc

0

(J(v)� J(vc)) f(v)
F (vc)

dv

�
;
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which is positive when vc is small but positive. The reason is that since J 0(0) < 0,
there is a vc > 0 such that J(v)� J(vc) > 0 for all v 2 [0; vc).
Note that J 0(0) < 0 whenever F is �very concave�near the origin. A common

example is F (v) = v
, v 2 [0; 1] where 
 2 (0; 1). The next example illustrates
that non-monotonic virtual valuations may arise quite naturally in all-pay auctions.
Thus, ironing provides another possible justi�cation for the use of head starts.

Example 2: Bidders have types with two components, v and c, where c�1 measures
the marginal cost of bidding or e¤ort. If a bidder who bids b wins with probability
q(b), his expected payo¤ is vq(b)� b=c, which is maximized where vcq(b)� b is maxi-
mized. Thus, the bidder�s type is essentially vc. It is usually assumed that either v or
c is common knowledge (and identical for all bidders). If the one private component
is drawn from a uniform distribution, say, then virtual valuations are monotonic.
Now, consider the case where both components are private information and both
are drawn independently from a uniform distribution on [0; 1]. The distribution of
x = vc is now determined by the multiplicative convolution of two well-behaved
uniform distributions, or

F (x) =

Z 1

0

minfx
v
; 1gdv =

Z x

0

dv +

Z 1

x

x

v
dv = x (1� lnx) ;

which has a U-shaped virtual valuation. �

9 Bidders�payo¤s

In the preceding analysis no weight was assigned to the welfare of the bidders. The
starting point of this Section is the extreme opposite assumption; the only concern
is bidders�ex ante expected payo¤s. This is a natural concern in contests in which
e¤ort is pure waste and no-one bene�ts from it. In the remainder of the paper,
assume the assumptions that were described in Section 2 are satis�ed.
Let EUi denote bidder i�s ex ante expected payo¤, i = 1; 2. I will compare two

commonly used welfare functions, the utilitarian welfare function,

H = EU1 + EU2;

and the Rawlsian welfare function,

W = minfEU1; EU2g:

If payments or transfers from one bidder to another is permitted, the mechanism
suggested by d�Aspremont and Gérard-Varet (1979) can be used to allocate the prize
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e¢ ciently and maximize H subject to budget balancedness. However, monetary
transfers are not necessarily possible in a contest setting where bidders expend e¤ort
rather than money. In any event, the purpose of the current paper is to examine
the use of head starts and handicaps in the context of a contest. For these reasons,
attention will be restricted to mechanisms or contests in which Ui(0) = 0, i = 1; 2, i.e.
a bidder with type zero earns zero expected payo¤. If Ui(0) < 0, the bidder would
not want to participate if his type is low (as Myerson and Satterthwaite (1983)
point out, the participation constraint may be violated in d�Aspremont and Gérard-
Varet�s (1979) mechanism). Likewise, since a bidder with type zero places zero value
on winning, Ui(0) > 0 is possible only if the bidder receives a transfer from the other
bidder or from a third party.
In the class of mechanisms in which Ui(0) = 0, i = 1; 2, the two welfare functions

give rise to di¤erent results and policy recommendations, as the next result demon-
strates. The �rst part is general, and does not rely on the regulation of the contests
taking the form of a head start and/or a handicap.

Proposition 4 Consider the class of mechanisms in which Ui(0) = 0, i = 1; 2.
Within this class, it holds that: (i) when H is maximized, W is minimized; W =
EU1 = 0, and (ii) H can be maximized by giving bidder 2 a real head start that
exceeds v1.19

Proof. See the Appendix.
Bidder 2 is better o¤ than bidder 1, ex ante, in the standard all-pay auction, or

EU2 > EU1 (formally, this is a consequence of Lemma 1). Thus, in sharp contrast
to the utilitarian case, bidder 1 must be made better o¤ if W is to increase.
Consider �rst the possibility that W is increased by using only one instrument;

bidder 1 is given a head start or bidder 2 is handicapped. The next result is a follow-
up to Proposition 4. If one instrument is used in moderation to increase W , then H
must decrease. That is, bidder 2 is hurt more than bidder 1 bene�ts. The second
part of the Proposition assumes that F2 is more dispersed than F1.

Proposition 5 (i) If bidder 1 gets a head start, then W is increasing in a for small
values of a, but decreasing in a for large values of a, regardless of the value of r. The
opposite holds for H. (ii) Assume that a = 0 and that F2 is more dispersed than F1.
Then, W is increasing in r and H is decreasing in r as long as r� < 1.

19It is possibly to get arbitrarily close to the maximum by letting r ! 0. However, there is an
equilibrium existence problem for r = a = 0 (as long as the tie-breaking rule allows bidder 1 a
strictly positive probability of winning).

27



Proof. See the Appendix.
The second part of the Proposition implies that if F1 is a scaled down version of

F2 and a handicap is used to increase W , then the optimal handicap is so large that
the weak bidder wins more often than the strong bidder, as in Theorem 3.
It is natural to ask whether head starts and handicaps can be combined to con-

struct a mechanism that is better for both bidders than the standard all-pay auction.20

Of course, such an intervention would increase both H andW . For this to work, one
of the bidders must receive a head start and a handicap at the same time. Otherwise,
one of the bidders is unambiguously worse o¤.
Thus, the objective is to choose (a; r) to make both bidders better o¤ than with

the status quo where (a; r) = (0; 1). It would be surprising if the �endowment� is
Pareto e¢ cient; trading a higher a for a lower r (or vice versa) seems likely to be
mutually bene�cial. The following example demonstrates the stronger point that it
is possible to increase revenue and make both bidders better o¤ at the same time.
Thus, the combination of head starts and handicaps can be used to improve the
e¢ ciency (or social surplus) of the auction.

Example 3: Assume that Fi(v) = v
vi
, v 2 [0; vi], i = 1; 2; with v2 = 3 > v1 = 1.

Figure 4 illustrates the indi¤erence curves of the two bidders through the status quo,
(a; r) = (0; 1). Bidder 1 receives a head start to the right of the origin, bidder 2 to
the left. Bidder 1 is better o¤ to the north-east, bidder 2 to the south-west.
Clearly, there are two regions where Pareto improvements occur. In the �rst

region, the weak bidder has a head start and a handicap. In the second region,
the strong bidder has a large head start and a large handicap. Thus, less sizeable
regulation is needed to achieve a Pareto improvement if the weak bidder is given a
head start and a handicap.
Moreover, to the right of the origin it can be shown that the level curve on

which the total expected expenditures (revenue) are constant is between the two
indi¤erence curves. Thus, it is possible to make all parties, including the recipient of
the expenditures, better o¤ ex ante. In other words, bidders may be better o¤ even
if they are expending more resources. �

H andW are concerned with expectations (of utility) taken over all types. Apart
from their mean, the characteristics of the distributions of utility are unimportant.
In comparison, Roemer (1998) advocates �equality of opportunity�. Simplifying a
bit, the objective of regulation here is to equalize the distribution of �achievement�

20Awarding the prize by a (possibly unfair) lottery may also make both bidders better o¤.
However, this is not a feasible option if a minimum level of revenue must be obtained. Likewise,
lotteries may be politically unpalatable. A lottery can be achieved by letting r1 = r2 = a = 0.
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across bidders. Assume for the moment that achievement means expected utility,
and let Ui(�) denote bidder i�s expected utility as a function of his type. Then, the
distributions of achievement are equalized if U2(v) = U1(�(v)) for all v 2 [0; v2].

r

bidder 1

bidder 2

head start
bidder 1

head start
bidder 2

1

Figure 4: Indi¤erence curves.

A head start will not be able to achieve this objective. The reason is that a head
start would exclude the disadvantaged bidder�s low types, while at the same time
bene�tting the low types of his rival. Thus, U2(v) 6= U1(�(v)) when v is small.
Consider now the use of handicaps. To illustrate, assume for simplicity that

�0(v) < 1 for all v, which implies that F1 is less disperse than F2. Following Myerson
(1981), for any v 2 [0; v2],

U2(v) =

Z v

0

q2(x)dx

U1(�(v)) =

Z �(v)

0

q1(x)dx =

Z v

0

q1(�(x))�
0(x)dx � U s1 (v);

where integration by substitution was used in the second line. To begin, assume
for instance that bidders with the same rank win with the same probability, or
q2(x) = q1(�(x)) for all x 2 [0; v2]. Since �0(v) < 1, however, U2(v) > U1(�(v)) for
all v > 0. In fact, to have any hope of creating equality of opportunity, the weak
bidder must win more often than the strong bidder at comparable ranks. Note that
this is in line with the conclusion of Proposition 5 when the objective is to maximize

29



W .21 Similarly, by Theorem 3 a revenue maximizing designer appears to move in
the right direction by perhaps creating more equality of opportunity (the caveat is
that Theorem 3 does not reveal if the designer is too generous to the weak bidder).
However, it is impossible to achieve perfect equality of opportunity with a handicap,
or any other instrument for which q1(v1) = q2(v2) for that matter. To see this, assume
that U2(v2) = U s1 (v2) and note that U

0
2(v2) = q2(v2) > q1(v1)�

0(v2) = U
s0
1 (v2). Hence,

there is a neighborhood to the left of v2 where U2(v) 6= U s1 (v).22
Roemer (1998) might not agree with the previous de�nition of achievement. He

is more interested in the �nal outcome, something that is tangible and in principle
measurable. Examples include levels of education or lifetime income, but apparently
not utility in the standard sense. Indeed, Roemer (1998, page 26) explicitly states
that it is irrelevant whether e¤ort is �pleasant or painful�.23 By this de�nition, the
probability of winning may be a better measure of achievement. Then, the objective
is to equalize q2(v) and q1(�(v)) for all v 2 [0; v2]. As noted in Section 5.1 (and Section
5.3 for the complete information model), this can be achieved when F1 is a scaled
down version of F2, by setting � = 1. However, in the general case the objective
cannot be met with a linear handicap. Hickman (2011) interprets the di¤erence
between q2(v) and q1(�(v)) as measuring the �enrollment gap� when the contest
is a competition for admission into university. Hickman (2011) primarily examines
quotas and head starts; his model and results are discussed in the introduction.

10 Discussion and conclusion

Applications and extensions are discussed next. A previous version contains a more
thorough and formal examination of the topics in Sections 10.1 and 10.2.

21See Roemer (1998, Chapter 4) for a comparison of the equality of opportunity principle with
utilitarian and Rawlsian welfare.

22By similar reasoning, since U 02(v) = q2(v) and Us01 (v) = q1(�(v))�
0(v), q1(�(v)) > q2(v) is

necessary whenever q2(v) > 0 in order to achieve U2(v) = Us1 (v) for all v 2 [0; v2]. As already
mentioned, it is necessary that bidder 1 wins more often than bidder 2, holding the rank �xed.

23Roughly speaking, Roemer (1998) views the bidder�s propensity for e¤ort (here captured by his
type, v) as a primitive of his observable identity (e.g. his upbringing or social circumstances). One
of his examples is that of Asian students whose upbringing may emphasize academic e¤ort more.
If an Asian student (bidder 2) is competing with a non-Asian student (bidder 1) for admission
into university, then neither should be held accountable for the preferences or propensity for e¤ort
instilled in them by their di¤erent upbringing.
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10.1 Application: Contests for research funding

The competition for research funding can be viewed as a contest. A signi�cant
amount of time and e¤ort may go into writing a grant proposal, but this investment
is not always rewarded.
Think of the researcher as a bidder. The prize is a grant. The bidder is charac-

terized by his observable CV and perhaps his seniority.24 The researcher�s �bid�is
his proposal, which is costly in terms of e¤ort. His type is how much he values the
grant or how much e¤ort he is willing to expend to be successful.
In Canada, the following rules were used until 2011 to evaluate an application for a

Standard Research Grant submitted to the Social Sciences and Humanities Research
Council (SSHRC): �the score on the record of research achievement accounts for 60
per cent of the overall score, and the score on the program of research accounts for
40 per cent of the overall score�.25 Hence, an individual with a good research record
will out-score a competing proposal by a less successful scholar, even if the programs
of research are of comparable quality. She has a head start.
In contrast, if the applicant obtained his Ph.D. within the last �ve years of the

application deadline he would be considered a �new scholar�. In this case, the
two components are weighted �such that either a 60/40 or 40/60 ratio will apply,
depending on which will produce the more favorable overall score.�
Now, compare an established scholar and a new, unproven, scholar. The estab-

lished scholar has a head start due to her past research achievements. On the other
hand, she is handicapped because her score is less sensitive to her e¤ort.
Often, a grant is more valuable early in a scholars� career, meaning that new

scholars perhaps value a grant more than established scholars. That is, new scholars

24In practice, there may be an incentive to devote time and e¤ort to build up one�s CV this year
to increase one�s chances next year. Here, however, I consider the CV to be exogenous when the
decision to write a proposal is made. See Konrad (2002) for a two-stage model in which preliminary
actions in the �rst stage a¤ects the contest, held in stage two. Arozamena and Cantillon (2004)
study another two-stage model. See Avery (1998) and Hörner and Sahuguet (2007) for models in
which early action may transmit information to other contestants in a later competition.

25See http://www.sshrc-crsh.gc.ca/funding-�nancement/programs-programmes/
standard_grants_subventions_ordinaires-eng.aspx. Since 2011, the Standard Research Grant
has been replaced by Insight Grants, but the application for these are evaluated in a simi-
lar way. The biggest di¤erence is that Insight Grants do not give any explicit advantages to
new scholars. The shorter Insight Development Grants reserves 50% of funds for new schol-
ars. The Australian Research Council evaluates applications based on a �xed 40/60 weight-
ing. A �target level of funding� is identi�ed for projects by Early Career Researchers. See
www.arc.gov.au/pdf/DP10_FundingRules.pdf. In the UK, the Economic and Social Research
Council has a dedicated program (the First Grants scheme) for new researchers. See www.esrc.ac.uk.
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are the �strong� contestants; given the pressure faced by the untenured, they are
willing to su¤er more (expend more e¤ort) to win a grant. Likewise, established
scholars may have more demands on their time and therefore higher opportunity
costs. If this is so, then SSHRC gives the weak bidder (the established scholar) a
head start and a handicap. Sections 7 and 9 provide two possible explanations for
why this design may be worthwhile.
Likewise, within the two categories (established/new scholars) it is the researchers

who have already proven their worth, as captured by their better CVs, who have a
head start. Relatively speaking, the disadvantaged contestants are those that still
have something to prove, i.e. those that may value a grant especially highly.

10.2 Many bidders

For tractability, it was assumed that the contest has only two bidders; Parreiras and
Rubinchik (2010) demonstrate the technical di¢ culties of analyzing even the stan-
dard all-pay auction with many bidders. However, with multiple bidders there may
be additional reasons for manipulating the contest. For instance, Baye, Kovenock,
and de Vries (1993) show that it may pay to exclude strong bidders. Such exclusion
can in principle be achieved by giving very large head starts to all rival bidders.
In a companion paper, Kirkegaard (2011b) studies handicaps in all-pay auctions

with more than two heterogenous bidders who have non-linear cost functions. In
that setting, some of the weaker bidders may become worse o¤ if a strong bidder is
handicapped. In other words, handicapping a contestant may not be favorable to all
his rivals when there are more than two bidders in total. In contrast, it follows from
Siegel�s (2009) analysis that a bidder in a generic complete information contest can
never be hurt (though he may not gain) when an opponent is handicapped.

10.3 Other instruments

A contest can be manipulated in many other ways than by using head starts and
handicaps.
For instance, bidding caps are sometimes imposed. Caps in asymmetric contests

are analyzed in Che and Gale (1998) and Sahuguet (2006). Che and Gale (1998)
consider a complete information model, while Sahuguet (2006) consider the uniform
model. In both cases, a suitably chosen cap is pro�table. In the incomplete infor-
mation model, the most obvious e¤ect of a cap is to pool types at the top. That is,
both bidders bid at the cap if their type is high enough, say if it exceeds some bv1
and bv2, respectively. Of course, the incentive to bid at the cap is di¤erent for bidder
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1 and bidder 2. It will generally be the case that bv1 6= k(bv2), where k(�) is the tying
function from the standard all-pay auction. This gives rise to a interesting secondary
e¤ect. Speci�cally, the allocation also changes among the types that bid below the
cap. The reason is that for types in [0; bvi], the new tying function, bk, is determined
in part by the boundary condition bk(bv2) = bv1 6= k(bv2). Hence, bk and k will di¤er for
any v 2 (0; bv2]. In other words, like a handicap, a cap a¤ects the allocation globally.
Thus, a formal analysis of caps would meet similar challenges as those in Section 5.
Kirkegaard (2008) considers a related instrument. He allows one bidder the op-

portunity to preempt the all-pay auction by submitting a su¢ ciently high bid (or
bribe). In some ways, this identity-dependent instrument is a counterpart to an
identity-dependent head start, except that the primary e¤ect is at the top. How-
ever, for reasons similar to those described above, the allocation once again changes
globally. Kirkegaard (2008) shows that giving the strong bidder the opportunity to
preempt the contest is pro�table in the uniform model. Indeed, it may be possible
to make the seller and both bidders better o¤ ex ante, as in Example 3.
Another common instrument is a reserve price or bidding �oor, which excludes

both bidders�low types. In the model in the current paper, such exclusion has the
attractive feature that it denies types with negative virtual valuation the prize. As
in Sections 6 and 7, once a reserve price has been used to change things at the
bottom, there is more of an incentive to use a handicap to �x things at the top by
handicapping the weak bidder. However, in the absence of a handicap, the reserve
price generally causes a mass of the strong bidder�s relatively low types to bid exactly
at the reserve price. It would be desirable to exclude these types altogether, because
they are likely to have negative virtual valuations. This can be achieved by increasing
the reserve price but at the same time give the weak bidder a head start that nulli�es
the increase in the reserve. The weak bidder then uses the same strategy as before,
but it now becomes less desirable for the strong bidder to bid at the reserve. Thus,
a reserve price and a head start may go hand-in-hand.

10.4 Concluding remarks

By contrasting head starts and handicaps, I showed that the speci�cs of the instru-
ments used to favor a contestant are highly important in determining the conse-
quences of favoritism. Even if they favor di¤erent contestants, di¤erent instruments
need not cancel each other out. In fact, they may be pro�tably combined in order
to pursue objectives such as expenditure maximization or the maximization of bid-
ders�payo¤. In particular, giving the weak bidder a head start and a handicap may
increase revenue and/or make both bidders better o¤.
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Appendix: Proofs

Proof of Proposition 1. It will be con�rmed that no bidder has an incentive to
deviate from the strategies in the Proposition, given that the other bidder follow his
equilibrium strategy.
As a preliminary step, note from (2) that

k0(v) =
r1
r2

k(v)f2(v)

vf1(k(v))
(16)

for all v 2 (0; v2]. Thus, when v � vc1,

s1(v) = a1 +

Z v

vc1

r2k
�1(x)f1(x)dx = a1 +

Z k�1(v)

k�1(vc1)

r2yf1(k(y))k
0(y)dy

= a1 +

Z k�1(v)

vc2

r1k(y)f2(y)dy = s2(k
�1(v));

where the second equality follows from integration by substitution. In conclusion,
s1(v) = s2(k

�1(v)), which con�rms that bidder 1 with type k(v) scores the same as
bidder 2 with type v. Since strategies are monotonic, a score of s1(z), z 2 (vc1; v1],
gives bidder 1 with type v expected payo¤ of

EU1(v; z) = vF2(k
�1(z))� c1 (s1(z)) = vF2(k�1(z))�

Z k�1(z)

vc2

k(x)f2(x)dx

= vF2(v
c
2) +

Z k�1(z)

vc2

(v � k(x)) f2(x)dx:

In comparison, a score of only a1 (bidding zero, as if the type is zero) yields expected
payo¤ of EU1(v; 0) = vF2(vc2), and it follows that

EU1(v; z)� EU1(v; 0) =
Z k�1(z)

vc2

(v � k(x)) f2(x)dx:

If v � vc1, expected payo¤ is therefore maximized by letting z = v or scoring s1(v) as
prescribed by the equilibrium strategy. Likewise, if v < vc1, bidding zero or scoring a1
is optimal. Note that scoring higher than s1(v1) = s2(v2) cannot be optimal either,
because such an action would only increase costs without increasing the winning
probability beyond that obtained by a score of s1(v1).
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Turning to bidder 2 with type v, a score of s2(z), z 2 [vc2; v2], produces expected
payo¤ of

EU2(v; z) = vF1(k(z))� c2 (s1(k(z))) = vF1(k(z))�
Z k(z)

vc1

k�1(x)f1(x)dx� c2(a1)

= vF1(v
c
1) +

Z k(z)

vc1

�
v � k�1(x)

�
f1(x)dx� c2(a1)

=

Z k(z)

vc1

�
v � k�1(x)

�
f1(x)dx;

where the last equality follows from the de�nition of vc1 in (3). In comparison, if
bidder 2 scores zero, his payo¤ is zero. Thus, bidder 2 has no incentive to deviate
from his equilibrium strategy either.

Proof of Lemma 1. Compare the slopes of k and �,

k0(v) =

�
r
k(v)

v

�
� f2(v)

f1(k(v))
; �0(v) =

f2(v)

f1(�(v))
;

where the former can be derived from (2) and the latter from the de�nition of �. If k
coincides with �, the term in parenthesis in k0(v) is at most r�, while the other term
equals �0(v). Thus, if r� < 1 then k(v) is �atter than �(v) whenever k(v) = �(v).
Consequently, k(v) = �(v) at most once on (0; v2]. However, since k(v2) = �(v2)
they can never coincide on (0; v2). Since k0(v2) < �0(v2) it must then hold that
k(v) > �(v) for all v 2 (0; v2). The proof of the second part is analogous.

Proof of Lemma 2. Assume �(� 2(v)) = v or F2(� 2(v)) = F1(v) for some v > 0.
Since Z �2

0

J2(x)f2(x)dx = �� 2 (1� F2(� 2)) ;

(8) implies that

�� 2 (1� F2(� 2)) = J1(v)F1(v) =

Z v

0

J1(v)f1(x)dx

>

Z v

0

J1(x)f1(x)dx = �v (1� F1(v)) = �v (1� F2(� 2))

or v > � 2. However, this leads to the contradiction that F1(v) > F1(� 2) > F2(� 2).
Thus, there is no v > 0 for which bidder 2 with type � 2 has the same rank as bidder 1
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with type v. Moreover, since � 2(0) > 0 or F1(0) = 0 < F2(� 2(0)), bidder 2 with type
� 2(0) has higher rank than bidder 1 with type 0. Combining the two observations
proves the Lemma.

Proof of Lemma 3. The �rst step is to show that EPi(�) can be written in the
form EPi(�) = viEP

s
i (�), as claimed. If bidder i has type vi, his �scale-adjusted�

type is vsi =
vi
vi
. Note that bidder 1 and bidder 2 have the same rank if their scale-

adjusted types are the same, i.e. F1(v1) = F2(v2) if vs1 = vs2. Using De�nition 2,
equation (2) can be writtenZ v1

k

1
v1
f( x

v1
)

x
v1

1

v1
dx = r

Z v2

v

1
v2
f( x

v2
)

x
v2

1

v2
dx:

Integrating both sides by substitution yieldsZ 1

ks

f(x)

x
dx = �

Z 1

vs

f(x)

x
dx; (17)

where ks is the scale-adjusted type of bidder 1 who ties with the scale-adjusted type
of bidder 2, vs. Note that ks(vs) = vs, or k(v) = �(v), if � = 1.
If bidder i has type v, his virtual valuation is

Ji(v) = v �
1� F ( v

vi
)

1
vi
f( v

vi
)
= vi

 
v

vi
�
1� F ( v

vi
)

f( v
vi
)

!
= viJ(v

s);

where

J(vs) = vs � 1� F (v
s)

f(vs)
:

Next, de�ne qsi (v
s) = qi(v

svi) = qi(v) as bidder i�s scale-adjusted winning probability.
Bidder i�s ex ante expected payment can be written as

EPi =

Z vi

0

Ji(v)q
s
i (
v

vi
)fi(v)dv =

Z vi

0

viJ(
v

vi
)qsi (

v

vi
)
1

vi
f(
v

vi
)dv

= vi

Z 1

0

J(vs)qsi (v
s)f(vs)dvs;

where the last step follows from integrating by substitution. De�ning

EP si =

Z 1

0

J(vs)qsi (v
s)f(vs)dvs (18)
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as bidder i�s scale-adjusted expected payment, bidder i�s expected payment is EPi =
viEP

s
i . Since k

s determines the winning probability, qsi (v
s), and by extension EP si ,

it follows from (17) that EP si depends only on �, and not at all on vi.
The results stated in the lemma are proven next. The expected scale-adjusted

payment from bidder 2 is

EP s2 =

Z 1

0

J(vs)F (ks(vs))f(vs)dvs =

Z 1

0

vs(1� F (vs))f(ks(vs))ks0(vs)dvs

=

Z 1

0

(1� F (vs))�ks(vs)f(vs)dvs;

where the second line comes from integration by parts and the third from implicit
di¤erentiation of (17).
Equation (17) reveals how ks depends on �

@ks(vs)

@�
= � ks(vs)

f(ks(vs))

Z 1

vs

f(x)

x
dx;

and it follows that

@EP s2 (�)

@�
=

Z 1

0

ks(vs)(1�F (vs))f(vs)dvs�
Z 1

0

(1�F (vs))
�
�
ks(vs)f(vs)

f(ks(vs))

Z 1

vs

f(x)

x
dx

�
dvs:

(19)
From (17),

�
ks(vs)f(vs)

f(ks(vs))
= ks0(vs)vs

meaning that (19) can be written

@EP s2 (�)

@�
=

Z 1

0

ks(vs)(1� F (vs))f(vs)dvs �
Z 1

0

vs(1� F (vs))g(vs)dvs (20)

where

g(vs) = ks0(vs)

Z 1

vs

f(x)

x
dx:

The antiderivative of g is

G(vs) =

Z vs

0

g(y)dy =

�
ks(y)

Z 1

y

f(x)

x
dx

�vs
0

+

Z vs

0

ks(y)

y
f(y)dy

= ks(vs)

Z 1

vs

f(x)

x
dx+

Z vs

0

ks(y)

y
f(y)dy;
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since L�Hopital�s rule can be used to show that ks(y)
R 1
y
f(x)=xdx converges to zero

as y converges to zero. The last term in (19) can can now be rewritten by integrating
by parts Z 1

0

(1� F (vs))
�
�
ks(vs)f(vs)

f(ks(vs))

Z 1

vs

f(x)

x
dx

�
dvs

=

Z 1

0

vs(1� F (vs))g(vs)dvs

=

Z 1

0

G(vs) (vsf(vs)� (1� F (vs))) dvs

=

Z 1

0

ks(vs)vs
Z 1

vs

f(x)

x
dxf(vs)dvs �

Z 1

0

ks(vs)(1� F (vs))
Z 1

vs

f(x)

x
dxdvs

+

Z 1

0

�Z vs

0

k(x)

x
f(x)dx

�
(vsf(vs)� (1� F (vs))) dvs:

Rearranging yields

2

Z 1

0

ks(vs)(1� F (vs))
Z 1

vs

f(x)

x
dx

�
�f(vs)

f(ks(vs))

�
dvs + A(�)

=

Z 1

0

ks(vs)vs
Z 1

vs

f(x)

x
dxf(vs)dvs +

Z 1

0

ks(vs)(1� F (vs))f(vs)dvs;

where integration by parts was used to obtain the last part on the right hand side
and where

A(�) =

Z 1

0

ks(vs)(1� F (vs))
Z 1

vs

f(x)

x
dx

�
1� �f(vs)

f(ks(vs))

�
dvs:

Thus,Z 1

0

ks(vs)(1� F (vs))
Z 1

vs

f(x)

x
dx

�
�f(vs)

f(ks(vs))

�
dvs

=
1

2

�Z 1

0

ks(vs)vs
Z 1

vs

f(x)

x
dxf(vs)dvs +

Z 1

0

ks(vs)(1� F (vs))f(vs)dvs � A(�)
�
:
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Inserting this back into (19) yields

@EP s2 (�)

@�
=

1

2

�Z 1

0

ks(vs)(1� F (vs))f(vs)dvs �
Z 1

0

ks(vs)vs
Z 1

vs

f(x)

x
dxf(vs)dvs + A(�)

�
=

1

2

�Z 1

0

ks(vs)vs
�
1� F (vs)

vs
�
Z 1

vs

f(x)

x
dx

�
f(vs)dvs + A(�)

�
=

1

2

�Z 1

0

ks(vs)vs
�Z 1

vs

f(x)

vs
dx�

Z 1

vs

f(x)

x
dx

�
f(vs)dvs + A(�)

�
Note that the �rst term is strictly positive. If � = 1 then ks(vs) = vs. Thus,

A(1) = 0 and EP s02 (1) > 0 regardless of the curvature F . Consider now � 2 (0; 1).
To prove that A(�) is positive in this case, it su¢ ces to show that the integrand is
positive for all values of vs. In other words, the intention is to show that

1� �f(vs)

f(ks(vs))
= f(vs)

�
1

f(vs)
� �

f(ks(vs))

�
is positive. Using (17) to solve for �, the previous expression is proportional to

1

f(vs)

Z 1

vs

f(x)

x
dx� 1

f(ks(vs))

Z 1

ks(vs)

f(x)

x
dx:

Since � < 1, ks(vs) � vs and so it is su¢ cient to prove that

C(vs) � 1

f(vs)

Z 1

vs

f(x)

x
dx =

1� F (vs)
f(vs)

Z 1

vs

1

x

f(x)

1� F (vs)dx

is decreasing in vs. The �rst term is non-negative and decreasing, by assump-
tion. Since the second term is also non-negative and decreasing, C 0(vs) � 0. Thus,
A(�) � 0 for all � 2 (0; 1] whenever F (v) satis�es the regularity assumption. Hence,
EP s02 (�) > 0 for all � 2 (0; 1].
The fact that EP s01 (1) = �EP s02 (1) < 0 regardless of the curvature of F and that

EP s01 (�) < 0 for all � 2 [1;1) when F is regular can be proven in a similar manner.
However, this symmetry is obvious; (17) and (18) imply that the roles of bidder 1
and bidder 2 can be reversed by changing � to 1

�
. Thus, EP s1 (�) = EP

s
2 (
1
�
).

Proof of Theorem 3. Since v2 > v1, the �rst part of Lemma 3 implies that
ER0(1) > 0, which in turn implies the existence of a local maximum at some � > 1.26

26Note that ks(vs) ! 0 as � ! 1, or qs1(vs) ! 1, qs2(v
s) ! 0. This implies that EP si (�) ! 0

and thus ER(�)! 0 as �!1. In other words, the optimal value of � is �nite.
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Next, I will show ER(�) cannot achieve a global maximum at any � < 1. Since
J(v) is monotonic, by assumption, EP s1 (�) + EP

s
2 (�) is maximized at � = 1. The

reason is that � = 1 implies a symmetric allocation, which is optimal in a mechanism
with homogeneous bidders (given the good is sold with probability one). It follows
that if EP si (�) > EP

s
i (1) then EP

s
j (�) < EP

s
j (1), j 6= i; at most one of the scale-

adjusted payments can exceed the scale-adjusted payments for � = 1. Likewise,
ER0(1) 6= 0 means that � = 1 is not optimal, and thus EP si (�) > EP si (1) for
some i = 1; 2 at the optimal �. Finally, to maximize (11), it must be the case that
EP s2 (�) � EP s1 (�). Otherwise, changing � to

1
�
reverts the roles of the bidders in

(17) and therefore switches EP s2 and EP
s
1 . This would increase expected revenue

because the coe¢ cient of EP s2 is the larger. Putting these observations together
imply that EP s2 (�) > EP

s
2 (1) = EP

s
1 (1) > EP

s
1 (�) when ER(�) is maximized. The

�rst inequality necessitates � > 1, by Lemma 3.

Proof of Theorem 4. Using the same procedure as in Lemma 3, the derivative
of bidder 2�s expected payment with respect to r can be written

@EP2(r)

@r
=

1

2

Z v2

0

k(v)v

�Z v2

v

f2(x)

v
dx�

Z v2

v

f2(x)

x
dx

�
f2(v)dv

+
1

2

Z v2

0

k(v)(1� F2(v))
Z v2

v

f2(x)

x
dx

�
1� rf2(v)

f1(k(v))

�
dv:

The �rst term is positive. By assumption, f1(k(v)) � min f1(x) � max f2(x) � f2(v).
Hence, when r � 1, the second term is positive as well. Thus, bidder 2�s expected
payment declines if he is favored (r < 1).
Consider now the e¤ects of handicapping bidder 1. Switching the roles of bidders

1 and 2 yields

@EP1(r)

@r
=

1

2

Z v1

0

k�1(v)v

�Z v1

v

f1(x)

v
dx�

Z v1

v

f1(x)

x
dx

�
f1(v)dv

+
1

2

Z v1

0

k�1(v)(1� F1(v))
Z v1

v

f1(x)

x
dx

�
1� rf1(v)

f2(k�1(v))

�
dv:

with some abuse of notation, since r should here be interpreted as a handicap against
bidder 1. With this interpretation in mind, the interest is on values of r greater than
1, which is equivalent to favoring bidder 2. When r � 1, the second term in the
derivative is negative. Collecting terms,

@EP1(r)

@r
=
1

2

Z v1

0

k�1(v)T (v)f1(v)dv
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where

T (v) = 1� F1(v)� v
Z v1

v

f1(x)

x
dx+ (1� F1(v))

Z v1

v

f1(x)

x
dx

�
1

f1(v)
� r

f2(k�1(v))

�
� 1� F1(v)� v

Z v1

v

f1(x)

x
dx+ (1� F1(v))

Z v1

v

f1(x)

x
dx

�
1

min f1(x)
� 1

max f2(x)

�
;

whenever r � 1. Note that this bound on T is zero when v = v1. For brevity, let
C < 0 denote the term in the parentheses. The derivative of the bound with respect
to v is then

�
Z v1

v

f1(x)

x
dx (1 + f1(v)C)� (1� F1(v))

f1(v)

v
C;

which is positive if 1+ f1(v)C � 0. This is the case for all v if 1+min f1(x)C � 0 or

2max f2(x)�min f1(x) � 0;

which is true by the assumption in the theorem. Hence, T (v) is bounded above by
a function that is negative, and so T (v) � 0 for all v. It now follows that bidder
1�s expected payment decreases whenever he is handicapped. In conclusion, both
bidders pay less, in expectation, if bidder 1 is handicapped. The theorem follows.

Proof of Theorem 5. Assume (i) is satis�ed. Theorem 1 implies that a 6= 0.
It remains to show that a � 0. By Theorem 2, a < 0 necessitates that r� � 1.
Following the argument in the proof of Theorem 1, any a < 0 that is a candidate for
a maximum must produce a (vc2; v

c
1) pair at the intersection of �

�1
2 and k in Figure 2

(where k implicitly depends on r). I next show that a more pro�table combination of
head starts and handicaps exists. Since ��12 is below �, any intersection of ��12 and k
takes place in the region below �. Since k(0) = 0 but �(v) = 0 for some v > 0, it also
follows that the unique (by assumption) intersection of k and � must occur to the left
of any intersection between ��12 and k. In other words, k and � do not intersect to
the right of the intersection between ��12 and k, which means that k is below � from
this point on. In this region, below �, expected revenue increases if bidder 2 wins
more often. This can be achieved by lowering r (shifting k upwards) while at the
same time adjusting a to keep vc1 constant. The shaded area in Figure A.1 captures
the combinations of types for which the object is awarded to bidder 2 with the new
mechanism but not the old mechanism. Since bidder 2�s virtual valuation exceeds
that of bidder 1 in this region, expected revenue has increased.
Assume now that (ii) is satis�ed instead. The �rst part of the condition implies

that �0(v)v � �(v) or vf2(v) � �(v)f1(�(v)) since �
0(v) = f2(v)

f1(�(v))
. Recalling that
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v � �(v) and 1� F1(�(v)) = 1� F2(v) by de�nition of �(v), a comparison of J1 and
J2 at identical ranks then reveals that

J2(v)� J1(�(v)) = v
�
1� 1� F2(v)

vf2(v)

�
� �(v)

�
1� 1� F1(�(v))

�(v)f1(�(v))

�
� 0

whenever J2(v) � 0 or v � v�2. Since J1 is an increasing function, by assumption, it
must be the case that �(v) � �(v) for all v � v�2 (recall that � satis�es J1(�(v)) =
J2(v)). The signi�cance of the second part of condition (ii) is the implication that
� 2(0) � v�2. Since � > ��12 whenever ��12 is de�ned (Lemma 2), the conclusion is that
�(v) � �(v) > ��12 (v) whenever ��12 is de�ned.
Now compare k and �. As noted above, r� � 1 is necessary for a head start to

bidder 2 to be pro�table. As before, any candidate (vc2; v
c
1) pair must be found at

the intersection of ��12 and k, but at such a point k must be below � (since ��12 is).
Starting from such a point, it can then be shown that k(v) � �(v) for any v 2 (vc2; v2].
This property follows from the assumed monotonicity of �(v)

v
and an argument similar

to the one in the proof of Lemma 1. Consequently, �(v) � k(v) > ��12 (v) for all
v � vc2. The argument that lead to Figure A.1 can now be repeated to conclude the
proof.

v2

v1

@
@I
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�
�
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�
�
�
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Figure A.1: The weak bidder gets the head start, a�� > 0.
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Proof of Lemma 4. First, F2 automatically �rst order stochastically dominates
F1 if v2 is su¢ ciently large. From Theorem 1, it follows that it is su¢ cient to show
that � 1 and k cross exactly once in order to prove that ER(a; 1) is single-peaked in
a, a � 0. Using the de�nition of � 1,

d

dv
lnF1 (� 1(v)) =

f1 (� 1(v))

F1 (� 1(v))
� 01(v) = J

0
2(v) (J1 (� 1(v))� J2(v))

�1 ;

whenever � 1(v) > 0. The term in the parenthesis is strictly positive, since J1 is
strictly increasing. Once again by de�nition of � 1,

J2(v) = �� 1(v)
1� F1 (� 1(v))
F1 (� 1(v))

;

and so
d

dv
lnF1 (� 1(v)) = J

0
2(v)

�
� 1(v)

F1 (� 1(v))
� 1� F1 (� 1(v))

f1 (� 1(v))

��1
:

Since h2 is monotonic, by assumption, J 02(v) � 1. Thus,

d

dv
lnF1 (� 1(v)) �

�
max
x

�
x

F1 (x)
� 1� F1 (x)

f1 (x)

���1
: (21)

By assumption, f1 is �nite and strictly positive. Hence, both ratios are �nite and
strictly positive. The di¤erence must be �nite, and so the term on the right of (21) is
strictly positive. In other words, the slope of lnF1 (� 1(v)) is bounded below, and the
bound just derived is independent of F2. On the other hand, for k > 0 and r = 1,

d

dv
lnF1(k(v)) =

f1(k(v))

F1(k(v))
k0(v) =

k(v)

F1(k(v))

f2(v)

v
=

k(v)

F1(k(v))

1

(v2)
2

f
�
v
v2

�
v
v2

: (22)

As explained in Section 4, k and � 1 intersects at least once. At such an intersec-
tion, both k and v are strictly positive, while J2(v) is strictly negative and equal to
E [J1(x)jx � � 1(v)]. Since (see Section 5)

J2(v) = v2J

�
v

v2

�
= E [J1(x)jx � � 1(v)]

where J is negative and strictly increasing, v
v2
must increase to produce the same � 1

when v2 increases. In other words, when v2 is large, � 1 is not de�ned for small values
of v

v2
. Thus, at any intersection of � 1 and k, the third term in (22) is bounded above.
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The �rst term is also bounded above (since f1 is bounded below, k=F1(k) does not
explode as k goes to zero). However, the second term goes to zero as v2 increases.
Thus, when v2 is su¢ ciently large, lnF1(k(v)) is almost �at at any point where it
intersects lnF1 (� 1(v)). Since the slope of the latter is bounded below, it follows that
the two functions intersect no more than once. This concludes the proof.

Proof of Corollary 3. As a preliminary step, note that Ji(vi) = vi and

J 0i(v) = 2 +
f 0i(v)

fi(v)

1� Fi(v)
fi(v)

:

By concavity and convexity, respectively, it follows that

J1(v) � 2v � v1 and J2(v) � 2v � v2:

By de�nition, � 1(v) = 0 when v is such that J1(0) = J2(v) or

�v1 � J1(0) = J2(v) � 2v � v2;

from which it can be inferred that v � (v2 � v1) =2 is necessary for � 1 to be de�ned.
Since F2 is convex, J 02(v) � 2. Then, from the proof of Lemma 4,

d

dv
lnF1 (� 1(v)) = J

0
2(v)

�
� 1(v)

F1 (� 1(v))
� 1� F1 (� 1(v))

f1 (� 1(v))

�
| {z }

�0

�1

> 2
F1 (� 1(v))

� 1(v)

whenever � 1 < v1. Assuming r = 1 and using (22) in Lemma 4, lnF1(k(v)) is strictly
�atter than F1 (� 1(v)) at any point of intersection (which must occur at k = � 1 < v1)
if

2

�
F1 (k(v))

k(v)

�2
� f2(v)

v
:

Since F1 is concave, F1(k)=k is decreasing in k. Likewise, f2(v) is increasing in v, by
assumption. Finally, v is no smaller than (v2 � v1) =2, or � 1 would not be de�ned.
Thus, the inequality above is satis�ed if

2

�
1

v1

�2
� f2(v2)

(v2 � v1) =2
or

v2 � v1
v21

� f2(v2);
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as reported in the corollary (in fact, since � 1 is not de�ned for v > v�2, f2(v2) can
be replaced by f2(v�2), which is smaller). If this condition is met, then ER(a; 1) is
single-peaked.
Since F1 is concave and F2 convex, the condition in Theorem 4 is equivalent to the

�rst condition in the corollary. Moreover, the curvature assumptions imply that �(v)
is convex and so �(v)=v is non-decreasing. To invoke the second part of Theorem 5,
it is also necessary that

J1(0) �
Z v�2

0

J2(x)
f2(x)

F2(v�2)
dx = �v

�
2(1� F2(v�2))
F2(v�2)

;

but since J1(0) � �v1, it is su¢ cient that

v�2(1� F2(v�2))
F2(v�2)

� v1:

Recall that v�2 = argmax x(1� F2(x)) or J2(v�2) = 0. Let m denote the median, i.e.
F2(m) =

1
2
. By convexity, f2(m) � (2m)�1 (otherwise, f2(x) � f2(m) < (2m)�1 for

all x 2 [0;m], but that contradicts F2(m) = 1
2
). Thus,

J2(m) = m�
1� 1

2

f2(m)
� 0;

which in turn implies v�2 � m. By de�nition, v�2(1�F2(v�2)) � m(1�F2(m)), and so

v�2(1� F2(v�2))
F2(v�2)

� m(1� F2(m))
F2(v�2)

� m(1� F2(m))
F2(m)

= m � 1

2
v2;

where the last inequality follows from the convexity of F2. To satisfy the condition
in the second part of Theorem 5, it is thus su¢ cient that

1

2
v2 � v1;

but, as explained after Theorem 4, this is implied by the �rst condition stated in the
corollary. Theorems 1, 2, 4, 5(ii), and 6 now apply, which proves the corollary.

Proof of Proposition 4. Since Ui(0) = 0, i = 1; 2, (6) implies that H can be
written as

H =

Z v1

0

h1(v)q1(v)f1(v)dv +

Z v2

0

h2(v)q2(v)f2(v)dv: (23)
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Thus, maximizing H is equivalent to maximizing the expected value of the reciprocal
of the hazard rate of the winner (given Ui(0) = 0). However, h1 and h2 are decreasing,
by assumption. In comparison, Myerson (1981) shows that when virtual valuation
is not everywhere increasing, the revenue maximizing mechanism �irons� virtual
valuation by pooling together an interval of types and assigning them the same
probability of winning. Applying the same logic to H, it is optimal to pool together
all of a bidder�s types, since hi(v) is nowhere increasing. The �ironed�value of hi(v)
on [0; vi] is Z vi

0

hi(v)fi(v)dv =

Z vi

0

(1� Fi(v)) dv =
Z vi

0

vfi(v)dv;

which is the expected value of bidder i�s type, EVi. Since all types are pooled
together, bidder i�s probability of winning is independent of his type. Thus, the
objective is to maximize q1EV1 + q2EV2. The unique solution is to give the object
with probability one to bidder 2 since he has the highest expected valuation (due to
�rst order stochastic dominance). As a result, bidder 1 never wins and his payo¤ is
zero, the lowest possible individually rational payo¤. This proves part (i). A head
start can be used to implement the optimal mechanism. If bidder 2�s head start
exceeds v1, bidder 1 is deterred from participating, q1 = 0. This proves part (ii).

Proof of Proposition 5. (i) Assume bidder 1 gets a head start, a > 0. Given (4)
and (5), the derivative of H with respect to a is

f2(v
c
2)F1(v

c
1)
@vc2
@a

�Z vc1

0

h1(v)
f1(v)

F1(vc1)
dv � h2(vc2)

�
;

which is analogous to (9). Since h2(0) > h1(v) for any v 2 [0; v1], the derivative is
negative when a (or v22) is small. The �rst term in the parenthesis approaches EV1 as
a (or vc1 and v

c
2) grows, whereas the second term approaches 0. Thus, the derivative

is positive when a is large. W = minfEU1;EU2g must be inverse u-shaped because
EU1 and EU2 move in opposite directions and cross once.
(ii) If F2 is more dispersed than F1 then h2(v) > h1(�(v)) for all v 2 [0; v2),

since 1� F2(v) = 1� F1(�(v)). Since hi is decreasing in its argument, the function
�h(v) de�ned by h1(�h(v)) = h2(v) is therefore below �(v) when v < v2. However,
�h(v2) = �(v2) = v1. Figure A.2 illustrates the relationship between �h(v), �(v), and
k(v) when r� < 1 (see Lemma 1). Since h2 > h1 above �h, bidder 2 should ideally
win when the combination of types is above �h in order to maximize H. In other
words, H would be minimized if k sits on top of �h; the objective is to move the
allocation away from �h. Now, an increase in r moves k closer to �h, but k remains
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highest as long as r� < 1. Thus, the allocation changes because bidder 1 wins more
often in the region above �h. This unambiguously lowers the expected value of the
reciprocal of the hazard rate of the winner; H decreases.
Turning to W , recall that EU1 < EU2 when r = 1. Thus, W = minfEU1;EU2g

is increasing in r when EU1 < EU2. This is the case for any r such that r� < 1.
Since k > �, bidder 2 wins with probability F1(k(v)) > F1(�(v)) = F2(v). Hence,
bidder 2�s ex ante expected utility can be bounded below,

EU2 >

Z v2

0

h2(x)F2(x)f2(x)dx =

Z v2

0

(1�F2(x))F2(x)dx =
Z 1

0

(1�z)z 1

f2(F�2(z))
dz;

where the substitution z = F2(x) was used to obtain the last equality. Since F2 is
more dispersed than F1, the density of the former is by de�nition smaller than the
density of the latter at the same rank, or f2(F�12 (z)) < f1(F

�1
1 (z)). Hence,

EU2 >

Z 1

0

(1� z)z 1

f2(F�2(z))
dz >

Z 1

0

(1� z)z 1

f1(F�1(z))
dz > EU1;

where the upper bound on EU1 (the last inequality) was obtained analogously to the
bound on EU2 (bidder 1 wins with a probability below his rank when r� < 1).

v2

v1

k(v)

�(v)

�h(v)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure A.2: �h(v), �(v), and k(v) when r� < 1.

50


