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Abstract

In the standard independent private values model, the second-price auction

(SPA) is generally taken to be more e¢ cient than the �rst-price auction (FPA)

when bidders are asymmetric. However, this conclusion assumes that reserve

prices are identical across auctions. This paper endogenizes the reserve price

and shows that it may be lower in the FPA. Hence, gains from trade are realized

more often in the FPA. This e¤ect may make the FPA more e¢ cient than the

SPA. Indeed, the FPA may Pareto dominate the SPA. That is, the FPA may

be more pro�table and yet be preferred by all bidders.
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1 Introduction

A central tenet of auction theory is that all commonly used auctions are equally

pro�table and equally e¢ cient when bidders are symmetric, risk neutral, and have

independent private values. This paper concentrates on the symmetry assumption.

Even with asymmetric bidders, the second-price auction (SPA) allocates the object

e¢ ciently whenever it is sold. In other words, the SPA is conditionally e¢ cient :

Conditional on a sale, gains from trade are maximized. Since the �rst-price auction

(FPA) does not have this property it is tempting to conclude that the SPA is more

e¢ cient than the FPA. Indeed, most of the theoretical and empirical literature studies

the apparently more intricate question of which auction is more pro�table. Never-

theless, the e¢ ciency question deserves more attention. Not only is e¢ ciency and

distributional concerns relevant to society and governments alike, they also inform

regulation as well.

As Hu, Matthews, and Zou (2010) among many others point out, in any given

auction the possibility that the object may not be traded due for example to a reserve

price leads to e¢ ciency loss on its own. It is for this reason that the e¢ ciency question

cannot immediately be put to rest. After all, focusing only on conditional e¢ ciency

ignores the possibility that the object may not be sold with the same probability in

the two auctions. In either auction, the object is sold if and only if there is at least

one bidder whose valuation exceeds the reserve price. Hence, if the reserve price is

di¤erent in the SPA and the FPA then gains from trade are not realized equally often.

This paper considers a seller who designs the reserve price to maximize expected

revenue without regard to e¢ ciency. The resulting reserve price may be lower in the

FPA than in the SPA, in which case the FPA generates gains from trade more often.

Hence, it is no longer obvious which auction is more e¢ cient. If the reserve price is

much lower in the FPA than in the SPA, the former may be more e¢ cient.

In fact, it turns out that the FPA may even Pareto dominate the SPA ex ante.

That is, the seller and all the bidders, be they strong or weak, may agree that the

FPA is preferred. This should be seen in light of the common assertion, originally

due to the seminal paper by Maskin and Riley (2000), that the SPA is preferred by

strong bidders. The reason is that the FPA tends to favor the weak bidders to the

detriment of the strong bidders. However, when the reserve price is lowered it bene�ts

types that would otherwise have been excluded, even if those types belong to strong
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bidders. If the di¤erence between reserve prices is large enough, this bene�t of the

FPA may even percolate to higher types as well. A lower reserve price in some ways

diminishes competitive pressure amongst bidders.

The optimal reserve price in the SPA serves a single role: To enforce the optimal

amount of rationing. In the FPA, the reserve price has an additional, more indirect,

role. When the reserve price is lowered in such an auction, the interaction between

types that would have bid above the old reserve price changes too. The lower reserve

price causes stronger bidders to lower their guard. Emboldened, the weak bidders

take advantage by bidding relatively more aggressively. As a consequence, it is more

likely that a weak bidder wins the auction. Hence, lowering the reserve price favors

weak bidders at the expense of strong bidders, which tends to be pro�table. It is this

extra indirect e¤ect in the model that drives the reserve price lower in the FPA.

The paper�s conclusions are potentially important for several reasons. First, it

demonstrates that it is important to account for the endogeneity of reserve prices

when comparing di¤erent auction formats. Second, once this is taken into account,

it is possible that all parties agree what the preferred auction format is, meaning

that there is less of a con�ict between revenue and e¢ ciency. Third, as discussed

in the next section, the impact of the auction format on entry is more subtle than

previously thought. Fourth, there are implications for regulation as well. In the

current paper, the self-interested seller is motivated only by pro�t yet nevertheless

often self-selects the auction with the higher social surplus. Regulation that dictates

that a conditionally e¢ cient auction like the SPA must be used may prove to be

counterproductive as the higher endogenous reserve price may undo the otherwise

obvious welfare advantages of the SPA.

2 Related literature

Endogenous reserve prices: Myerson (1981) has characterized the optimal mech-

anism in the independent private values model with risk neutral agents. When bidders

are symmetric, and subject to a now standard regularity condition, any commonly

used auction implements the optimal mechanism as long as the reserve price is chosen

correctly. Thus, the SPA and FPA are equally pro�table and e¢ cient in this case.1

1Kotowski (2018) shows that identity-dependent reserve prices may be pro�table in the FPA
when the regularity assumption is violated. Milgrom and Weber (1982) shows that the English
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Hu, Matthews, and Zou (2010) relax the risk neutrality assumption by allowing

agents to be risk averse.2 Regardless of whether it is the seller or the bidders that

are risk averse, the optimal reserve price is lower in the FPA than in the SPA. Hence,

the object is more likely to be allocated e¢ ciently in the FPA. Likewise, the seller

and the bidders prefer the FPA to the SPA.3 The current paper instead relaxes the

symmetry assumption. The consequences of asymmetry are less clear cut but there

are cases where the results mirror those in Hu, Matthews, and Zou (2010).

Empirical papers such as Haile and Tamer (2003), Aradillas-López, Gandhi, and

Quint (2013), and Coey, Larsen, and Sweeney (2019) estimate the revenue maximizing

reserve price in ascending timber auctions with and without independent values. Coey

et al (2017) allow for asymmetric bidders. However, these papers only consider one

auction format.

Liu et al (2019) also assume that bidders are symmetric but they assume that the

seller has limited commitment power and tries to sell the object at a later date if the

reserve price is not met today. As the time between periods vanishes, it is generally

optimal to sell the object immediately, implying that no reserve price is used.

Auction design, entry, and efficiency: Auction design is doubly important

when the set of bidders is endogenous. Optimal auction design with symmetric and

asymmetric bidders are analyzed by Levin and Smith (1994) and Jehiel and Lamy

(2015), respectively, when entry costs are �xed and bidders are uninformed about

their valuations at the time of entry. Here, e¢ cient auctions with zero reserve prices

are optimal when the number of potential entrants is so large that entry probabilities

are determined by a zero-pro�t condition. Gentry, Li, and Lu (2017) show that reserve

prices should be used when bidders are partially informed when they enter. Lu and

Ye (2013) allow entry costs to be private information. The optimal design consists

of a mechanism that allocates entry permits combined with an e¢ cient post-entry

auction.

auction and the SPA are more pro�table than the FPA for any given reserve price when valuations
are a¢ liated rather than independent. Cai, Riley, and Ye (2007) explore the signaling role of
endogeneous reserve prices in a SPA in which the seller has information that is relevant to bidders.

2Rosenkranz and Schmitz (2007) consider bidders with reference-based utility. The reserve price
a¤ects the reference point. In their setting, the FPA and SPA remain revenue equivalent and the
optimal reserve price is the same in either auction.

3Hu, Matthews, and Zou (2019) allow for both risk aversion and values that are interdependent.
In this case, the optimal reserve price in the SPA may be below the seller�s own-use valuations. See
also Levin and Smith (1996).
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With asymmetric bidders, the literature often focuses on how to entice weak bid-

ders to enter the auction. For instance, in Athey, Levin, and Seira (2011) and Athey,

Coey, and Levin (2013), strong bidders enter with probability one in equilibrium,

whereas weak bidders randomize. Given strong bidders enter for sure, the problem

trivially is to encourage weak bidders to participate. Klemperer (2002) similarly

stresses the importance of attracting weak bidders. The FPA has the advantage that

it is more desirable for weak bidders, holding �xed the reserve price. This paper shows

that it may also be more desirable for strong bidders, once endogenous di¤erences in

reserve prices are accounted for. This may be relevant when strong bidders do not

enter with probability one. For instance, in Flambard and Perrigne (2006), Marion

(2007), and Krasnokutskaya and Seim (2011) the numbers of both weak and strong

bidders at auction �uctuate signi�cantly in the data.

Technically speaking, the current paper holds �xed the set of participants. This is

primarily to make it easier to convey the main points, as a �rst step. However, there

are applications where the set of bidders is in fact constant. For instance, Brendstrup

and Paarsch (2006) identify exactly seven bidders in their �sh auctions. Two of the

bidders can be thought of as strong and �ve as weak, but they all participate in

virtually every auction. Hence, �xed and exogenous participation appears to be a

good approximation in this case. In their setting, however, the reserve price is tightly

regulated by the government and it was in fact never binding in their sample.

On the subject of regulation, Marion (2007) and Krasnokutskaya and Seim (2011)

among others examine the type of bid preferences that are awarded to bidders from

disadvantaged groups in government procurement auctions. They conduct a coun-

terfactual analysis of the impact of varying the level of bid preferences on indicators

such as revenue, entry, e¢ ciency, and the probability that a weak bidder wins. The

current paper argues that the reserve price deserves the same level of scrutiny, and

that the reserve price also has distributional consequences.

While the FPA and SPA are commonly used, other mechanisms are in use in

some speci�c markets. Larsen (2020) and Larsen and Zhang (2018) compare the

combination of auctions and bargaining that is employed in the used-car market

with the theoretically most e¢ cient mechanism and quantify the e¢ ciency loss of the

former. The division of surplus is also examined.

Revenue ranking of asymmetric auctions: Vickrey (1961) observed that the

FPA is not e¢ cient when bidders are asymmetric and indeed showed by example
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that there is no unambiguous revenue ranking between the SPA and FPA.4 In his

two-bidder example, the valuation of one bidder is commonly known. Maskin and

Riley (2000) studied the revenue ranking in more detail, assuming that one bidder is ex

ante �weak�and the other is �strong.�They considered three di¤erent environments.

The SPA yields higher revenue than the FPA in one environment but the FPA is

revenue superior in the other two environments. These papers ignore reserve prices.5

Kirkegaard (2012a) extends Maskin and Riley�s (2000) analysis in various direc-

tions. Among other extensions, he allows for more weak bidders and permits a reserve

price. The revenue ranking is una¤ected by these changes in any of Maskin and Ri-

ley�s (2000) three environments. However, Kirkegaard (2012a) does not explore how

the optimal reserve prices compare in the two auctions.

Kirkegaard (2021) notes that the analysis may, perhaps surprisingly, be easier

when there are more strong bidders, at least when the level of asymmetry is large

enough. Thus, whereas Maskin and Riley�s (2000) environments are rigidly struc-

tured, Kirkegaard (2021) shows that the revenue ranking may in less structured envi-

ronments depend on the reserve price if the reserve price is restricted to be the same

across auctions. The ranking may also change with the numbers of strong and weak

bidders. Endogenizing the reserve price and allowing it to di¤er across auctions, the

pro�tability ranking may likewise depend on the seller�s own-use value.

A remark on the approach taken in the current paper is in order. Asymmetric FPA

are notoriously di¢ cult to handle. For instance, closed form solutions for bidding

strategies are rarely available. Thus, the paper aims to explain the main intuitive

drivers of the results through the simplest possible means. Section 4 demonstrates

all of the paper�s central conclusions simply by applying existing results in a careful

manner. This part relies on the results in Kirkegaard (2012a) but it also extends an

example due to Kaplan and Zamir (2012). Section 5 then more rigorously explores

when and why the reserve price may be lower in the FPA than in the SPA. This part

utilizes the methodology in Kirkegaard (2021) and in some cases combine it with

arguments that may be familiar from Mares and Swinkels (2014a,b).

4Cantillon (2008) argues that bidder asymmetry is detrimental to revenue in the SPA and FPA
but not necessarily in the optimal auction. Deb and Pai (2017) prove that there exists some auction
with symmetric or anonymous rules that implements the optimal auction.

5Hafalir and Krishna (2008) show that the FPA is more pro�table than the SPA when bid-
ders are asymmetric and resale is allowed. Moreover, Hafalir and Krishna (2009) show that resale
may actually reduce e¢ ciency in an asymmetric FPA due to speculative bidding and asymmetric
information even at the resale stage. These papers also ignore reserve prices.
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3 Auctions with strong and weak bidders

Throughout, it is assumed that there are two groups of bidders. There is an exogenous

number, nw � 1 and ns � 1, of weak and strong bidders, respectively. A weak bidder
has a privately known type in the interval [0; vw] while a strong bidder�s privately

known type is in the interval [0; vs]. It is important for the analysis that vs > vw > 0.

A bidder�s type describes his willingness to pay for the object at auction. Types

are independent from one another but are identically distributed within each group.

Bidders are assumed to be risk neutral. The seller is also assumed to be risk neutral

and to have no use of the object herself. Hence, she simply seeks to maximize expected

revenue. The role of the seller�s own-use valuation is examined in Kirkegaard (2021).

To convey the main points, it is su¢ cient and convenient to assume a very speci�c

relationship between the type distributions in the two groups. For this purpose,

consider some strictly positive and continuously di¤erentiable function g(v) that is

de�ned for all v � 0. Let G(v) =
R v
0
g(x)dx, v � 0. It is assumed that bidders in

group i, i = s; w, draw types from the distribution function

Fi(vjvi) =
G(v)

G(vi)
; v 2 [0; vi]

with density

fi(vjvi) =
g(v)

G(vi)
; v 2 [0; vi]:

This model is a version of one of Maskin and Riley�s (2000) models, speci�cally

their �stretch�model in which Fs can be thought of as a stretched version of Fw.

Alternatively, Fw can be thought of as a truncation of Fs. This speci�cation is

convenient because once vw is held �xed, the level of asymmetry between the two

groups is parameterized by vs. In particular, bidders are symmetric in the limit as

vs ! vw, but in this paper the assumption that vs > vw is maintained throughout.

Given vs > vw, the distribution Fs dominates the distribution Fw in terms of

the likelihood-ratio. Krishna (2002) points out that this is a strong property which

among other things implies that Fs dominates Fw in terms of the reverse hazard rate.

It is well known that this in turn implies that weak bidders bid more aggressively in

the FPA for a given type than strong bidders; see e.g. Maskin and Riley (2000) and

Kirkegaard (2021). Thus, weak bidders win the FPA more often than is e¢ cient. In

comparison, the SPA has an equilibrium in weakly dominant strategies in which any
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bidder submits a bid that coincides with his type. Thus, the SPA is conditionally

e¢ cient as the bidder with the highest valuation wins.

Likelihood-ratio dominance also implies hazard rate dominance. The signi�cance

of this is that weaker bidders have higher �virtual valuations� than strong bidders,

for comparable types. Here, a bidder in group i, i = s; w, with type v 2 [0; vi] has
virtual valuation

Ji(vjvi) = v �
1� Fi(vjvi)
fi(vjvi)

or

Ji(vjvi) = v �
G(vi)�G(v)

g(v)
:

Since weaker bidders have higher virtual valuations, it follows from Myerson (1981)

that an optimal auction would favor the weak bidders. Bulow and Roberts (1989)

explain the intuition by noting that virtual valuation is comparable to marginal rev-

enue in a monopoly problem. However, this does not on its own prove that the FPA

is more pro�table than the SPA. After all, it is conceivable that the FPA overdoes

it and is too favorable to the weak bidders, to the point that the favoritism becomes

counterproductive. Additional assumptions are required in order to be able to prove

that the FPA is revenue superior.

For the purposes of the current paper, it will for convenience henceforth be as-

sumed that g(v) is log-concave, or equivalently that fi(vjvi) is log-concave in v for all
vi, i = s; w. This directly implies that the density cannot increase too quickly, which

is crucial in existing proofs. In fact, log-concavity of g(v) implies log-concavity of

G(v), which is all that is normally assumed (see below). Here, log-concavity of g(v) is

assumed because it also implies that the survival function 1�Fi(vjvi) is log-concave;
see Bagnoli and Bergstrom (2005). This has the convenient implication that Ji(vjvi)
is strictly increasing in v. Hence, if only one group of bidders was present, both the

SPA and the FPA would implement the optimal auction as long as the reserve price,

ri, is carefully selected, with Ji(rijvi) = 0.
Now, given log-concavity of G(v), Maskin and Riley (2000) show that the FPA is

strictly more pro�table than the SPA when there is only one bidder in each group,

or nw = ns = 1. Kirkegaard (2012a) shows that this revenue ranking holds for any

reserve price below vw �as long as it is the same in both auctions �while also allowing

for more weak bidders, or nw � ns = 1. Kirkegaard (2012b, Proposition A6) con�rms
that the same conclusion holds with more strong bidders, or ns � 1, as long as vs is
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large enough relative to vw. Finally, the weak bidders are e¤ectively excluded from

the auction if the reserve price is vw or higher, in which case the two auction formats

yield the same expected revenue.

The remainder of the paper proceeds as follows. Section 4 starts by characterizing

optimal reserve prices in the SPA, which is relatively straightforward. It then more

narrowly considers the case with one strong bidder. This makes it possible to quickly

demonstrate that the optimal reserve price may be lower in the FPA than in the SPA.

The main focus of the section is on the implications for e¢ ciency. However, Section

4 does not build much intuition for why the FPA may have a lower reserve price in

the �rst place. Section 5 pursues an explanation. It turns out that the intuition is in

some cases clearer when there are several strong bidders.

4 Optimal reserve prices and e¢ ciency

In the following, vw is �xed but vs is allowed to vary, subject only to the condition

that vs > vw. Let ERSPA(rjvs) and ERFPA(rjvs) denote the expected revenue from
a SPA and FPA, respectively, with reserve price r.

It is instructive to begin by examining the SPA. There is a qualitative di¤erence

between reserve prices above or below vw, as the former excludes weak bidders. Con-

sider �rst lower reserve prices, i.e. those that are below vw. From Myerson (1981),

expected revenue is the expected value of the winner�s virtual valuation. That is,

ERSPA(rjvs) = nw

Z vw

r

Jw(vjvw)Fw(vjvw)nw�1Fs(vjvs)nsfw(vjvw)dv

+ns

Z vs

r

Js(vjvs)Fw(minfv; vwgjvw)nwFs(vjvs)ns�1fs(vjvs)dv

when r 2 [0; vw]. Given the functional form that Fi takes, the derivative with respect
to r can be written as

@ERSPA(rjvs)
@r

= �G(r)
ns+nw�1g(r)

G(vs)nsG(vw)nw
[nwJw(rjvw) + nsJs(rjvs)] : (1)

The optimal reserve price must be strictly positive since virtual valuations are

strictly negative at v = 0. Indeed, since virtual valuations are strictly increasing in

r, ERSPA(rjvs) is either strictly increasing or single-peaked in r. Hence, there is a
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unique optimal reserve price among reserve prices in [0; vw]. Likewise, since Js(vjvs)
is strictly decreasing in vs, the optimal reserve price in [0; vw] is non-decreasing in vs
(it could be constant at the vw corner).

Consider next reserve prices in the interval [vw; vs], where only the strong bidders

are active. The optimal reserve price must be strictly below vs because a reserve

price of vs yields zero revenue. Moreover, the same style of arguments as before �but

deleting the weak bidders from the analysis �can be applied. Here, ERSPA(rjvs) is
either strictly decreasing or single-peaked on the interval [vw; vs] and the solution is

non-decreasing in vs (again, it could be constant at the vw corner).

Clearly, there may be a local solution on the interval [0; vw] and another on the

interval [vw; vs]. Hence, these local solutions must be compared.

Example 1 (uniform distributions): Assume that g(v) = 1 for all v � 0,

implying that distributions are uniform. Assume moreover that nw = ns = 1. As

long as vs < 3vw, there is a local maximum in the interval (0; vw), speci�cally at

r = vs+vw
4
. If vs > 2vw, there is a local maximum in (vw; vs), namely at r = 1

2
vs.

Thus, if vs 2 (2vw; 3vw) then there are two local solutions. It can be veri�ed that
the higher reserve price is optimal if and only if vs > 2:408vw. For future reference,

Figure 1 illustrates for the case where vw = 1 and vs = 2:4, where the lower reserve

price is slightly better than the higher reserve price. N

Example 2 (exponential distributions): Assume here that g(v) = e��v for

all v � 0, with � > 0 (if � = 0 then type distributions reduce to the uniform

distributions). This implies that G(v) = 1
�
(1� e��v) and that distribution functions

are truncated exponential distributions. Note that G(vi) is bounded above even as

vi !1. In this case,
Js(vjvs) = v �

1

�
+
1

�
e��(vs�v)

is bounded below for any given v. In particular, if vw � 1
�
then, regardless of vs, it

must hold that Js(vjvs) � 0 for all v 2 [vw; vs]. This means that expected revenue
is strictly decreasing in r on this interval and indeed that the optimal reserve price

must be strictly below vw. The intuition here is that increases in vs does not move

much probability mass to higher types. In other words, the strong bidders are only

negligibly stronger than the weak bidders. Hence, it is suboptimal to exclude the

weak bidders who are, after all, almost identical to the strong bidders. N

In Example 1, G(vi) diverges to in�nity as vi ! 1. This means that Js(vwjvs)
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Figure 1: Expected revenue in the SPA and FPA when g(v) = 1, vw = 1, vs = 2:4,
and nw = ns = 1. Expected revenue coincide when r � 1 but not when r < 1.

eventually becomes negative as vs grows, which rules out the situation in Example

2. Note that G(v) is unbounded above if g(v) is weakly increasing or if it is bounded

away from zero.

It can never be optimal to choose a reserve price of exactly vw. This would

necessitate that ERSPA(rjvs) is locally increasing in r as r approaches vw from the

left but locally decreasing as r approaches vw from the right. However, it can be

veri�ed that these are mutually contradictory properties. Hence, as vs increases, it

is possible that the optimal reserve price discontinuously jumps from one interval to

another. In Figure 1, the solution jumps from one hump to the other. When and if

this occurs, the increase in vs causes the optimal reserve price to jump upwards. This

is intuitive, as it becomes increasingly more attractive to focus on extracting rent

from strong bidders the stronger they get. In Example 2, the jump never happens

and the optimal reserve price is always below vw.

Lemma 1 Holding �xed vw and nw; ns � 1, the SPA has a unique revenue maximiz-
ing reserve price for all but at most one value of vs, denoted vts(ns; nw). The optimal

reserve price is below (above) vw if vs is strictly below (above) the threshold vts(ns; nw).

If vs = vts(ns; nw) then there is a revenue maximizing reserve price both below and

above vw. If G(v) is not bounded above then vts(ns; nw) < 1. Write vts(ns; nw) = 1
in the remaining case where the optimal reserve price is below vw for all vs > vw.
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Proof. See the Appendix.
Next, consider the FPA. Once again, the auction is e¤ectively a symmetric auction

at reserve prices above vw. Hence, on this range, the SPA and FPA are equally

pro�table and the locally optimal reserve price in [vw; vs] coincide in the two auctions.

However, the two auctions are not revenue equivalent at reserve prices below vw and

there is no reason to believe that the locally optimal reserve prices in [0; vw] are the

same. If ns = 1, it follows from Kirkegaard (2012a) that the FPA is strictly more

pro�table than the SPA for any �xed reserve price in [0; vw). Hence, when the SPA

has a globally optimal reserve price in (0; vw), then the globally optimal reserve price

in the FPA is in (0; vw) and the FPA is strictly more pro�table than the SPA. Figure

1 illustrates. This implies that the FPA with an endogenous reserve price is strictly

preferred by the seller when vs � vts(ns; nw).

Proposition 1 Assuming that ns = 1 and holding �xed vw and nw � 1, the FPA

with an endogenous reserve price is strictly more pro�table than the SPA with an

endogenous reserve price for all vs � vts(ns; nw).

Proof. In text.
The remainder of this section assumes that ns = 1 and that vts(1; nw) <1. Then,

vs = vts(1; nw) is taken as a starting point. Perturbations of vs above and below

vts(1; nw) are then considered. These experiments illustrate the main take-aways of

the paper. Later, ns and nw are allowed to vary but for notational simplicity vts(ns; nw)

is simply written vts when no confusion arises as a result.

4.1 Exclusion versus inclusion

Assume that ns = 1. Starting from vs = v
t
s, a small increase in vs ensures that there

is a unique optimal reserve price in the SPA. This reserve price is strictly above vw
and excludes weak bidders. However, when vs = vts, any optimal reserve price in the

FPA is strictly below vw.6 This property does not change with a small increase in vs.

Hence, the optimal reserve price is small enough that the weak bidders are included

in the auction. In Figure 1, the small increase in vs causes the right-most hump to

become optimal in the SPA whereas the left-most hump remains optimal in the FPA.

6It is unknown if there is a unique optimal reserve price in the FPA but this is unimportant for
the argument.
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Thus, in this environment, it can already be concluded that the FPA is strictly

more pro�table than the SPA when reserve prices are endogenous and it can likewise

be concluded that the FPA has a lower reserve price. This means that gains from

trade are realized more often in the FPA. At the same time, weak bidders weakly

prefer the FPA to the SPA regardless of their type. After all, they are excluded from

the SPA whereas they have a chance of winning the FPA if their type is high enough.

The latter types strictly prefers the FPA.

What about the strong bidder? In the SPA, it would take him a bid of at least

r > vw to win. In the FPA, the reserve price is lower but on the other hand he

faces competition from the weak bidders. Let bw denote the highest possible bid

from a weak bidder, i.e. the bid submitted by a weak bidder with type vw. Clearly,

rationality on the part of weak bidders implies that bw � vw. Now, the strong bidder
can win the auction with probability one simply by bidding bw. Hence, his options are

better in the FPA. It follows that the strong bidder weakly prefers the FPA regardless

of his type and strictly prefers it if his type is above the reserve price in the FPA.

Thus, both bidders weakly or strictly prefer the FPA to the SPA at the interim

stage, i.e. after types are revealed to bidders but before bidding takes place. It

follows that the FPA is strictly preferred to the SPA by bidders at the ex ante stage,

i.e. before types are known. Likewise, the seller strictly prefers the FPA at the ex

ante stage. In sum, the FPA is, ex ante, a strict Pareto improvement over the SPA.

Proposition 2 Assuming that ns = 1 and holding �xed vw and nw � 1, the FPA

with an endogenous reserve price ex ante strictly Pareto dominates the SPA with an

endogenous reserve price for a set of vs that is strictly above vts.

Proof. In text.
In the setting in Example 1, vts = 2:408. Using the approach described in the next

subsection it can be veri�ed numerically that the conclusion in Proposition 2 holds

for vs 2 (2:408; 2:546). However, to be clear, if vs increases too far above vts then the
two auctions share the same high reserve price and are payo¤ equivalent.

4.2 Accommodating weak bidders

Assume again that ns = 1. Starting from vs = vts, a small decrease in vs ensures that

any optimal reserve price in either auction is strictly below vw. Hence, weak bidders
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compete in either auction. Thus, the two auctions are substantially less di¤erent than

in the previous subsection. However, it is shown by example that the conclusion in

Proposition 2 may nevertheless still hold.

An example is required because it is generally impossible to characterize bidding

strategies in closed form in the FPA. This in turn makes it hard to quantify the trade-

o¤ that is at the heart of the following analysis in much generality. Nevertheless, the

next section attempts to generalize and explain a key insight regarding the relative

magnitude of optimal reserve prices in the two auctions.

Example 1 Continued (uniform distributions): As in Example 1, assume that

g(v) = 1 for all v � 0 and that nw = ns = 1. Kaplan and Zamir (2012) derive inverse
bidding functions in this case, even allowing for reserve prices. The relevant case is

described in their Corollary 1. Let these inverse bidding strategies be denoted 's(b)

and 'w(b) for the strong and weak bidder, respectively. With these in hand, it is pos-

sible to infer the distribution of the winning bid and thereby expected revenue. The

probability that the winning bid is below b is Fs('s(b)jvs)Fw('w(b)jvw) =
's(b)
vs

'w(b)
vw
.

Assume for now that vw = 1 and vs = 2:4. Then, Figure 1 plots expected revenue as

a function of the reserve price. The optimal reserve price in the FPA is rFPA = 0:775

whereas it is rSPA = 0:85 in the SPA. Once again, the FPA realizes gains from trade

more often and is strictly preferred by the seller ex ante.

The FPA is also weakly preferred by the weak bidders at the interim stage. The

argument is an extension of the conventional argument that the weak bidder wins

more often in the FPA than in the SPA. In this particular case, there is even the

additional bene�t that the reserve price is lower in the FPA. Hence, the weak bidder

strictly prefers the FPA to the SPA ex ante.

Things are more complicated for the strong bidder. Types in (rFPA; rSPA) prefer

the FPA as they now have a chance to win. However, it can be shown that types near

vs prefer the SPA because the weak bidder is emboldened in the FPA and bids fairly

aggressively. Hence, the interim ranking is sensitive to the bidder�s type.

However, it is possible to compute ex ante payo¤. For each bid b between rFPA

and the maximum bid, b, the strong bidder wins with probability Fw('w(b)jvw), in
which case he earns payo¤ of ('s(b)� b) since his type is 's(b) and he pays b. Since
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the density of the strong bidder�s bid is fs('s(b)jvs)'0s(b), ex ante expected utility is

EUFPAs =

Z b

rFPA
('s(b)� b)Fw('w(b)jvw)fs('s(b)jvs)'0s(b)db

=

Z b

rFPA
('s(b)� b)

'w(b)

vw

'0s(b)

vs
db;

where b is the highest possible bid in equilibrium. It can be con�rmed numerically

that EUFPAs = 0:4959. In comparison, ex ante expected utility in the SPA with the

optimal reserve price is EUSPAs = 0:4935. Thus, the strong bidder strictly prefers

the FPA to the SPA ex ante, although the di¤erence is small. The weak bidder�s

expected utility is much lower, and almost negligible, in both auctions. The reason

is that the reserve prices are very high relative to even his highest type and that the

competitor is so strong. More concretely, expected utility is EUFPAw = 0:0109 and

EUSPAw = 0:0042, respectively. Aggregating over both bidders and the seller, total

surplus is 1:1284 in the FPA and 1:0989 in the SPA. This is an increase of 2:68%. In

conclusion, this example, with vw = 1 and vs = 2:4 < vts, has the same property as

in Proposition 2; the FPA strictly Pareto dominates the SPA at the ex ante stage.

Once again, to be clear, it turns out that if vs falls too far below vts then the strong

bidder prefers the SPA to the FPA ex ante. Hence, the properties in Proposition 2

relies on vs being in an intermediate range. However, the result in Proposition 2 is

very strong as it requires all agents to agree that the FPA is better than the SPA.

Clearly, the range of vs values for which the FPA generates higher overall social

welfare than the SPA is larger than the range for which all agents prefer the FPA.

To demonstrate and quantify these assertions, �x vw = 1 but allow vs to vary

from 1 to 2:4. For each vs value, the same exercise as above can be carried out. The

two panels in Figure 2 summarize the resulting �ndings. From Figure 2(a), the strong

bidder prefers the FPA only when vs is 2:36 or higher.7 However, the FPA on balance

generates larger total surplus for a much wider range of parameters. In particular,

this occurs whenever vs is 1:45 or higher. Figure 2(b) illustrates the con�icting forces

at play. First, the FPA produces gains from trade up to 7:28% more often than the

SPA, due to the lower reserve price. Across all parameter values and both auctions,

the optimal reserve price is always above 0:5. This is substantially higher than the

7Thus, in combination with the observation after Proposition 2, the FPA Pareto dominates the
SPA whenever vs 2 (2:36; 2:55).
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seller�s own-use valuation, which is zero. Thus, whenever an extra sale occurs in

the FPA, it contributes signi�cantly to social welfare. On the other hand, the FPA

misallocates the object up to 4:38% of the time by allocating it to the weak bidder

when the strong bidder has a higher valuation. Some of these instances lead to very

signi�cant welfare losses, such as when the weak bidder outbids the strong bidder with

a type near vs. In many other instances, the weak bidder outbids the strong bidder

with only a slightly higher valuation, in which case the welfare loss is negligible.8 N
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2(a) Surplus gain from FPA over SPA. 2(b) Extra sales vs. misallocations.

Figure 2: Comparative statics with respect to vs in the uniform model.

4.3 Surplus maximization subject to a revenue target

In the context of Example 1, Figure 1 illustrates that there is a wide range of reserve

prices in the FPA that produce expected revenue that exceeds the highest possible

expected revenue in the SPA. Given vs = 2:4, this range is [0:5776; 0:9429]. Hence,

the seller does not need to get it �exactly right� for the FPA to be more pro�table

than the SPA. Indeed, it is possible to lower r far below rFPA = 0:775 and still earn

higher revenue in the FPA than in the SPA. The lower reserve price further improves

the e¢ ciency of the FPA.

These observations lead to the following thought experiment. Imagine an auction

run by a government who is concerned about e¢ ciency, yet who needs to achieve a

8Finally, there is some degree of over counting of the negative e¤ect of misallocation in the sense
that misallocation sometimes occur when no sale would have taken place in the SPA at all. In this
case, misallocation between bidders is still better than no sale.
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minimum revenue target. The revenue target can be motivated by the desire to avoid

distortionary taxation in other parts of the economy to fund government programmes.

If the revenue target is very high, then the SPA cannot meet the target but the FPA

might be able to. If the target is very low, then the SPA with a zero reserve price is

feasible and thus optimal since it maximizes total surplus. Next, consider a revenue

target that is about the size of the maximal revenue in the SPA. Then, there is

no wiggle room to change the reserve price in the SPA, whereas it can be lowered

substantially in the FPA, to the bene�t of both bidders. At r = 0:5776, total surplus

in the FPA increases to 1:1965, which is an improvement of about 8:9% over the SPA

with a reserve of 0:775 and the same revenue.

5 Why are reserve prices lower in the FPA?

The environments in Sections 4.1 and 4.2 share the feature that the optimal reserve

price is lower in the FPA than in the SPA. The resulting fact that the FPA realizes

gains from trade more often is what makes it possible for the FPA to be more e¢ cient

than the SPA. Thus, the ranking of reserve prices is central to the paper. So far,

however, no attempt has been made to explain the intuition behind this feature. The

present section is devoted to explaining why reserve prices are lower in the FPA. The

argument relies on insights from mechanism design.

5.1 One strong bidder

It is useful to return to the setting in Figure 1. Figure 3 depicts the type space in this

case, with the weak bidder�s type on the horizontal axis and the strong bidder�s type

on the vertical axis. The line marked t(v) denotes the type t of the strong bidder who

has the same virtual valuation as the weak bidder with type v, or Js(t(v)) = Jw(v).

Thus, the two bidders are tied in virtual valuation along this line. Virtual valuations

are positive on the thick part of t(v) but negative on the thin part of t(v).

The strong bidder has the larger virtual valuation above t(v) and the weak bidder

has the highest virtual valuation below t(v). The optimal auction rewards the item

to the bidder with the highest virtual valuation, provided it is positive. Virtual

valuations are negative in the rectangular area to the south-west of the central point

(0:5; 1:2). Hence, an optimal auction withholds the object if the type-pro�le is in this
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area. In the rectangular area above it, only the strong bidder has positive virtual

valuation and thus wins. The weak bidder wins in the bottom-right area. It is only in

the top-right area that both bidders have positive virtual valuation. Then, the strong

(weak) bidder wins if the type pro�le is above (below) the thick part of t(v).

The optimal reserve price in the SPA is rSPA = 0:85. In Figure 3, the allocation

can be summarized by the thick portion of the 45� line that is marked s(v). This is

where the bids (and types) of the two bidders tie. The strong bidder wins above s(v)

and the weak bidder wins below s(v), provided the bidder�s type is above rSPA. The

substantial distance between s(v) and t(v) indicates that the SPA is far from optimal.

Now consider a hybrid auction in which the auction is a FPA but the reserve price

is taken from the SPA and thus remains r = 0:85. Using Kaplan and Zamir (2012), it

can be determined when the strong or weak bidder wins. The curve marked h(v) in

Figure 3 represents the dividing line between these events. If the strong bidder has

type h(v) then he submits the same bid as the weak bidder with type v. Note that

the weak bidder wins more often than is e¢ cient. Sometimes, the weak bidder wins

even more often than is optimal, as h(v) is above t(v) when the weak bidder�s type is

large enough. On balance, however, h(v) is closer to t(v) than s(v) is. This explains

why the FPA is more pro�table than the SPA for a �xed reserve price.
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Figure 3: The optimal auction (t), the optimal FPA (k), the

optimal SPA (s), and a hybrid auction (h) when ns = 1.
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The next question is why the reserve price is lower in the FPA than in the SPA.

Lowering the reserve price in the SPA has a direct e¤ect whereas doing so in the FPA

has both a direct and an indirect e¤ect. The direct e¤ect from lowering the reserve

price is that some types who were previously excluded now have a chance to win. For

the weak bidder, these types have positive virtual valuation and the seller bene�ts

from included them. However, the types in question have negative virtual valuations

for the strong bidder and their inclusion hurts the seller. These e¤ects compete but

at rSPA there is no �rst-order e¤ect of a marginal change in the reserve price; see (1).

Lowering the reserve price in the FPA has an additional indirect e¤ect on types

that would have been included even with the higher reserve price. A lower reserve

price makes these types bid lower in the FPA, and more so for the strong bidder.

Thus, relatively speaking, the weak bidder becomes more aggressive and now outbids

more of the strong bidder�s types.

Consider the move from h(v) to k(v) in Figure 3. The latter represents the allo-

cation in the FPA with the optimal reserve price, rFPA = 0:775. The weak bidder

wins even more often than in the FPA with reserve rSPA. This causes k(v) to move

slightly further away from t(v) when the weak bidder�s type is high but it also causes

k(v) to move much closer to t(v) for a larger set of smaller types. On balance, k(v)

is closer to t(v) than h(v) is, and is therefore more pro�table. This indirect e¤ect is

absent in the SPA and explains why the FPA has a lower reserve price than the SPA.

5.2 More strong bidders

There is an important qualitative di¤erence between a FPA with one strong bidder

and a FPA with several strong bidders. In the former, the strong bidder faces compe-

tition only from weak bidders. It is for this reason that the strong and weak submit

the same bid when they have their respective highest type. In Figure 3, k(v) and h(v)

must for this reason terminate at the same point, (vw; vs). This has two pertinent

consequences. First, k(v) and h(v) must stay close near the terminal point. Thus,

the allocation near the top is relatively insensitive to changes in the reserve price.

This is not the case for smaller types, where k(v) and h(v) diverge. In Figure 3, this

is what makes a smaller reserve price in the FPA more pro�table on balance. Second,

k(vw) exceeds t(vw). In other words, a weak bidder with type vw wins too often from

a revenue perspective.
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Now, there is additional competitive pressure when a strong bidder faces compe-

tition from other strong bidders. In particular, it is possible that the strong bidders

will spur each other to bid so aggressively that the weak bidders cannot hope to keep

up. In this case, a weak bidder with type vw will bid less than a strong bidder with

type vs. Thus, k(v) may pivot down and terminate at some lower point, (vw; bv) with
k(vw) = bv < vs. If a strong bidder has type bv or higher, he bids so high that he is
certain to outbid all the weak bidders.9

Note that once bv < vs, k(v) depends on r but it is unchanged if vs increases

further. The technical reason is that the system of di¤erential equations on the

range of bids where both groups of bidders are active is una¤ected when vs increases,

simply because fs(vjvs)
Fs(vjvs) =

g(v)
G(v)

is independent of vs; see Kirkegaard (2021) for details.

Intuitively, it is irrelevant for bidders with lower types that higher types are added to

the mix because bidders with low types only win if other bidders have low types too.

Stretching the distribution leaves the relevant conditional probabilities unchanged.

However, t(v) moves up when vs increases because this causes strong bidders�virtual

valuations to decrease. In fact, if G(v) is not bounded above then t(v) increases

without bound as vs increases.

Taken far enough, k(v) lies entirely between the 45� line and t(v). Thus, when

G(v) is unbounded and vs is large enough, the FPA is unambiguously closer to the

optimal auction than the SPA is for a �xed reserve price; see Figure 4. The former

therefore yields strictly higher revenue for any given reserve price below vw. This

argument is originally due to Kirkegaard (2012b, Proposition A6).

Although this is a useful �rst step, the weakness is that it does not take the

endogeneity of the reserve price into account. In particular, it cannot in general be

ruled out that the above argument requires vs to be so large that the optimal reserve

price in either auction is above vw, in which case the argument is of course moot.

Thus, there is a need to quantify how large vs needs to be to invoke the argument.

9Hubbard and Kirkegaard (2019) is devoted to this issue but their main focus is on determining
when this occurs and on how numerical solution methods can be amended to correctly �nd and
simulate equilibrium. Kirkegaard (2021) uses the property to demonstrate that the pro�t ranking
of the FPA and SPA may be more sensitive to such parameters as the composition of bidders and
the seller�s own-use valuation than previously thought.
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Figure 4: The optimal auction (t), the optimal FPA (k), the

optimal SPA (s), and a hybrid auction (h), when ns � 2.

It turns out that it is possible to precisely quantify things in the uniform model.

Hubbard and Kirkegaard (2019) derive bv in closed form in the uniform model when

the reserve price is zero. Kirkegaard (2021, Proposition 1) shows that bv decreases as
the reserve price increases. Thus, in the uniform model, Hubbard and Kirkegaard�s

(2019) result provides an upper bound on bv = k(vw) for any reserve price below vw.
While the tying-function �unlike k(v) in Figure 3 �cannot be derived explicitly, it

can be shown that it is always steeper than t(v). This in turn means that k(v) lies

always below t(v) if k(vw) < t(vw), where t(vw) = 1
2
(vw + vw) in the uniform model.

Lemma 2 Assume g(v) = 1 and that ns � 2 and nw � 1. Then, for any reserve

price r 2 [0; vw), it holds that k(v) < t(v) for all v 2 [r; vw] if vs > c(ns; nw)vw, where

c(ns; nw) =

q
(ns + 1)

2 (ns + nw � 1)2 � 4nwns (ns + nw � 1)� (ns + 1) (ns � 1)
nw (ns � 1)

:

Proof. See the Appendix.
Note that c(ns; nw) represents a cut-o¤ in the level of asymmetry �as measured

by how much vs exceeds vw �above which it is necessarily the case that the FPA is
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strictly more pro�table than the SPA for any reserve price r 2 [0; vw). The cut-o¤ is
rapidly decreasing in both ns and nw. For instance, it falls quickly from c(2; 1) = 1:472

to c(3; 2) = 1:162 and on to c(4; 3) = 1:082 as ns and nw both increase. It converges

to one as ns !1 and/or nw !1. It is natural to conjecture that the FPA is more
pro�table than the SPA even if vs < c(ns; nw)vw but the proof technique does not

make it possible to prove this conjecture.

In the uniform model, Js(vjvs) � 0 for all v � vw if vs � 2vw. In this case, the

optimal reserve price must necessarily be below vw in both the SPA and the FPA. In

other words, vts is strictly above 2vw. As in Example 1, the exact value of v
t
s(ns; nw)

can be computed, although doing so is tedious. For example, vts(2; 1) = 2:219vw while

vts(3; 2) = 2:271vw and v
t
s(4; 3) = 2:287vw. The conclusion is that there is a relatively

large gap between c(ns; nw)vw and vts(ns; nw). For any vs in this range, the FPA

with an endogenous reserve price is strictly more pro�table than the SPA with an

endogenous reserve price.10

Figure 4 illustrates for the case where ns = 2, nw = 1, vw = 1 and vs = 7
4
.

Here, the optimal reserve price in the SPA is rSPA = 3
4
. Extending Hubbard and

Kirkegaard�s (2019) argument, it can be shown that bv = 1:153 in a FPA with reserve
price 3

4
. In comparison, t(vw) = 1:375. Indeed, since Lemma 2 applies, a hybrid FPA

auction with reserve price rSPA must lead to a tying-function h(v) that lies always

below t(v), as sketched in Figure 4. The point is that h(v) is closer to t(v) than s(v)

is. Thus, the FPA is more pro�table, holding �xed the reserve price.

The reserve price in the FPA is also no higher than the reserve price in the SPA. As

mentioned in the previous subsection, there is no direct �rst-order e¤ect of a marginal

change in the reserve price away from rSPA. However, a reduction in the reserve price

has the additional indirect e¤ect in the FPA that the allocation, k(v), moves even

closer to t(v). The fact that k(v) lies above h(v) is proven formally in Kirkegaard

(2021). Due to this indirect e¤ect, any optimal reserve price in the FPA is no larger

than in the SPA, even though its exact value cannot be determined analytically.11

Recall that vts > c(ns; nw)vw in the uniform model. This means that there are vs
values slightly above vts for which the optimal reserve price in the SPA but not the

10Note also that vts increases with nw. The reason is that higher nw makes reserve prices below
vw more pro�table but does not change the pro�tability of reserve prices above vw. Hence, the gap
between c(ns; nw)vw and vts increases with nw.

11Due to a technical complication, it is hard to prove that any optimal reserve price in the FPA
is strictly smaller than rSPA. See the proof of Proposition 3.
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FPA excludes weak bidders. As in Proposition 2, the FPA is once again a Pareto

improvement over the SPA. Starting at rSPA > vw, the two auctions are payo¤

equivalent to bidders. Lowering the reserve price can only bene�t them. Likewise,

the FPA is more pro�table, to the bene�t of the seller.

The next proposition summarizes this discussion for the uniform model and for-

mally proves the results.

Proposition 3 Assume g(v) = 1 and that ns � 2, nw � 1 and vs > c(ns; nw)vw.

Then, the following properties hold:

(i) The FPA with an endogenous reserve price is weakly more pro�table than the

SPA with an endogenous reserve price and any optimal reserve price in the FPA

is weakly smaller than any optimal reserve price in the SPA.

(ii) If the SPA has an optimal reserve price below vw then the FPA is strictly more

pro�table than the SPA and realizes gains from trade no less often.

(iii) The FPA with an endogenous reserve price ex ante strictly Pareto dominates the

SPA with an endogenous reserve price for a set of vs strictly above vts(ns; nw).

Proof. See the Appendix.
Small perturbations of g(v) should not be expected to a¤ect the conclusion of

Proposition 3. However, it is possible to more formally generalize Proposition 3 in at

least two directions.

First, assume that g(v) is increasing. Then, Fi(vjvi) is convex and it dominates
the uniform distribution in terms of the likelihood-ratio. This implies that bidders

are more likely to have higher types. Adapting a result in Hubbard and Kirkegaard

(2019), it can be proven that the increased competition forces bv to drop even lower.
At the same time, t(vw) moves up because Js(vw) diminishes as the strong bidders

become stronger, yet Jw(vw) remains equal to vw since virtual valuations and types

coincide at the top. Hence, the gap between t(v) and k(v) widens near v = vw.

This suggests that it remains the case that k(v) is globally below t(v), which is the

main ingredient in the arguments surrounding Figure 4. However, to establish this

formally, additional technical assumptions are needed. It is su¢ cient to assume that

d

dv

g0(v)v

g(v)
� 0 for all v > 0: (2)
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Recall the assumption that g(v) is log-concave. The assumption in (2) is equivalent

to assuming that g(ex) is log-convex for all x 2 R. The two assumptions are not
mutually exclusive but taken together they imply that g(v) is increasing, thus making

the latter assumption redundant. All the assumptions are satis�ed if e.g. g(v) = v�

or g(v) = e�v, with � � 0.12 The uniform model is a special case, with � = 0.

The assumption in (2) is stronger than is needed but it is the most succinct way of

guaranteeing that t(v) shifts up. Technically, (2) ensures that t(v) is even �atter,

and therefore even higher, than in the uniform model. In a di¤erent asymmetric

auction application with only two bidders, Mares and Swinkels (2014a,b) likewise

impose conditions on the primitives that serve to bound the slope of t(v). Some of

their results also require densities to be monotone, as is the case here.

Proposition 4 Assume that (2) is satis�ed and that ns � 2, nw � 1 and vs >

c(ns; nw)vw. Then, (i)�(iii) in Proposition 3 hold if vts(ns; nw) > c(ns; nw)vw.

Proof. See the Appendix.
The next example explains the role of the quali�er that vts(ns; nw) > c(ns; nw)vw.

Example 3 (power distributions): Given (2), the stronger bidders are now

stronger than is the case in the uniform model. Hence, it takes a smaller value of

vs to make high reserve prices optimal. In other words, if g(v) increases quickly

enough, then it may happen that c(ns; nw)vw > vts(ns; nw). The FPA is trivially no

less pro�table and no less e¢ cient than the SPA if vs > c(ns; nw)vw > vts(ns; nw). In

other words, part (i) of Proposition 3 is immediate in this case. However, parts (ii)

and (iii) are more interesting but for these it is required that vts(ns; nw) > c(ns; nw)vw.

Recall the su¢ cient condition that vs < vts(ns; nw) if Js(vwjvs) � 0. If g(v) = v�,
with � � 0, then this is in turn satis�ed as long as

vs � (2 + �)
1

1+� vw:

The factor (2 + �)
1

1+� exceeds c(ns; nw) for all (ns; nw) if � � 3:3. It exceeds c(3; 2)
if � � 19:4 and c(4; 3) if � � 48:85. In these cases, there is still a gap between

c(ns; nw)vw and vts(ns; nw). Since the uniform model corresponds to � = 0, it requires

a very large move away from the uniform distribution in order to destroy the gap. N

12Note that g(ex) is log-linear when g(v) = v� and that g(v) is log-linear when g(v) = e�v.
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Propositions 3 and 4 hold the set of bidders �xed and impose conditions on g(v).

In either case, the degree of asymmetry cannot be too small or else the technical

arguments do not have enough bite. That is, vs > c(ns; nw)vw is required. The

second approach to generalizing Proposition 3 is to instead �x g(v) and to impose

conditions on the set of bidders. This makes it possible to examine auctions with small

asymmetries. More formally, think of the asymmetry as being small if Js(vwjvs) > 0.
In this case, the optimal reserve price in either auction is strictly below vw regardless

of the number of weak and strong bidders that are present at auction.

For �xed values of vw and vs > vw, and for any log-concave g(v), t(v) is always

bounded away from v. However, Kirkegaard (2021, Proposition 3) shows that k(v)

converges to v for all v 2 (r; vw] and any r 2 (0; vw) when ns !1 and/or nw !1.
Intuitively, the FPA is arbitrarily close to e¢ cient with enough competition. Thus,

when the set of bidders is large enough, it holds that s(v) < k(v) < t(v) for all

v 2 (r; vw].

Proposition 5 Fix g(�) and assume that vw and vs are close enough that Js(vwjvs) >
0. Then, there exists (ns; nw) for which the FPA is strictly more pro�table and has a

weakly lower reserve price than the SPA.

Proof. In text.

5.3 Other distributions

It has been assumed throughout that vs > vw. It is natural to worry that this

assumption is crucial to the results. However, this is not the case. As Li and Riley

(2007) point out, the set-up can be approximated arbitrarily closely by a model

in which Fw is replaced by another distribution, eFw, that assigns arbitrarily small
density to types in [vw; vs]. Then, Fs and eFw share the same support and the results
in Propositions 2�4 still hold.

After the perturbation, Fs is no longer a �stretched�version of Fw. However, the

assumption that Fs stretches Fw is not important for the main intuition or for most

of the steps in the analysis. Stretching any Fs(vjvs) by increasing vs decreases the
strong bidders�virtual valuations and pushes t(v) up, even if Fs bears no relationship

to Fw to start. At the same time, when vs > bv a further increase in vs does not
change the allocation, as summarized by k(v). Hence, the same intuition as outlined

in the previous section still applies.
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6 Conclusion

This paper challenges and sometimes overturns the conventional wisdom that the

SPA is more e¢ cient than the FPA when bidders are asymmetric. The reason is that

the optimal reserve price in the FPA may be lower than in the SPA. This means

that the FPA is more likely to realize gains from trade. This property was estab-

lished in settings with one or more strong bidders. In fact, the intuition was in some

ways easier to convey when there are several strong bidders and some of the tech-

nical results could only be proven for such cases. Along with the companion paper,

Kirkegaard (2021), this suggests that there may at times be methodological advan-

tages to studying auctions with more than one strong bidder. Indeed, the empirical

literature suggests that this case is more frequent in the real world.

Accounting for the endogeneity of the reserve price is potentially important beyond

the SPA and FPA. For instance, future research may determine that it can in�uence

the ranking between various multi-unit auction formats. Baisa and Burkett (2018)

study the properties of di¤erent multi-unit auctions, including which are preferred by

weak and strong bidders, but they abstract away from a reserve price.
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Appendix: Omitted Proofs

Proof of Lemma 1. To start, note that there is a local maximum at some r > vw if

and only if Js(vwjvs) < 0. This necessitates that vs is large enough and, as explained
after Examples 1 and 2, this is also a su¢ cient condition if G(v) is not bounded above

(Example 2 shows that there are cases where Js(vwjvs) < 0 never happens regardless
of how large vs is). Now, it follows from (1) that if vs is such that ERSPA(rjvs) is
strictly increasing in r on the interval [0; vw] then this remains the case as vs increases.

In these case, Js(vwjvs) < 0 and the optimal reserve price is then strictly larger than
vw. This remains the case as vs increases. Hence, the interesting case is when vs is

so low that ERSPA(rjvs) has a peak in (0; vw).
Let ERSPAH (vs) denote the highest expected revenue if the seller is restricted to

high reserve prices, r � vw, and let ERSPAL (vs) denote the highest expected revenue if

the seller is restricted to low reserve prices, r � vw. When vs is small and close to vw,
ERSPAH (vs) < ER

SPA
L (vs) because in this case Js(vjvs) > 0 for all v 2 [vw; vs]. This

is intuitive because the two groups of bidders are almost symmetric when vs is small.

It was argued in the previous paragraph that ERSPAH (vs) > ER
SPA
L (vs) requires that

vs is large. The Lemma is trivial if there is no vs for which ERSPAH (vs) > ER
SPA
L (vs);

this is the case denoted vts = 1. Thus, assume in the remainder that there exists
some vs for which ERSPAH (vs) > ER

SPA
L (vs). As mentioned above, this is the case if

G(v) is not bounded above.

Then, by continuity of each of the two problems, there must be some value of vs,

denoted vts, for which ER
SPA
H (vts) = ER

SPA
L (vts); although v

t
s depends on ns and nw

this is suppressed here for simplicity. As r = vw cannot be optimal, ERSPAH (vts) =

ERSPAL (vts) can only occur if there is an interior solution in (0; vw) and another in

(vw; vs). To prove the Lemma now requires only that uniqueness of vts is established.

Now �x vs and let rL 2 (0; vw) denote the optimal low reserve price and let

rH 2 (vw; vs) denote the optimal high reserve price. These are unique, as explained
after (1). Using the Envelope Theorem, it can be veri�ed that

@ERSPAH (vs)

@vs
= ns

g(vs)

G(vs)

 
vs � ERSPAH (vs)�

Z vs

rH

�
G(x)

G(vs)

�ns�1
dx

!

> ns
g(vs)

G(vs)

 
vs � ERSPAH (vs)�

Z vs

vw

�
G(x)

G(vs)

�ns�1
dx

!
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and that

@ERSPAL (vs)

@vs
= ns

g(vs)

G(vs)

 
vs � ERSPAL (vs)�

Z vs

rL

�
G (minfx; vwg)

G(vw)

�nw � G(x)
G(vs)

�ns�1
dx

!

< ns
g(vs)

G(vs)

 
vs � ERSPAL (vs)�

Z vs

vw

�
G(x)

G(vs)

�ns�1
dx

!
:

However, at vs = vts, ER
SPA
H (vts) = ER

SPA
L (vts), and it must therefore hold that

@ERSPAH (vs)

@vs jvs=vts
>
@ERSPAL (vs)

@vs jvs=vts
.

This proves that once vs has reached vts, another small increase in vs unambiguously

makes high reserve prices optimal. Hence, there is a unique value of vts.

Proof of Lemma 2. Step 1: Comparing the slopes of k(v) and t(v). In the

uniform model, virtual valuations take the simple form Ji(vjvi) = 2v � vi. Thus,
t(v) = v + 1

2
(vs � vw), with t0(v) = 1. Holding �xed the reserve price, r, at some

value below vw, let k(vjr) denote the type of a strong bidder that submits the same bid
as a weak bidder of type v. Kirkegaard (2021, Proposition 1) proves that k(vjr) > v
for all v 2 (r; vw) and derives an expression for k0(vjr). Given k(vjr) > v, k0(vjr) is
bounded by

k0(vjr) > Fs(k(vjr)jvs)
fs(k(vjr)jvs)

fw(vjvw)
Fw(vjvw)

=
G(k(vjr))
g(k(vjr))

g(v)

G(v)
� 1;

where the last inequality comes from the fact that G(v) is log-concave and k(vjr) > v.
Hence, k0(vjr) > t0(v) for all v 2 (r; vw].
Step 2: Comparing the end-points of k(v) and t(v). Hubbard and Kirkegaard

(2019, Proposition 5) have proven that when there is no reserve price,

k(vwj0) = minfvs; q(ns; nw)vwg;

where

q(ns; nw) =

q
(ns + 1)

2 (ns + nw � 1)2 � 4nwns (ns + nw � 1) + 2nwns � (ns + 1) (ns + nw � 1)
2nw (ns � 1)

:

31



In comparison, t(vw) = 1
2
(vw + vs). Hence, t(vw) > k(vwj0) if and only if

vs > (2q(ns; nw)� 1) vw:

It is straightforward to verify that the term in the parenthesis reduced to c(ns; nw) in

Lemma 2. From Kirkegaard (2021, Proposition 1), k(vjr) is decreasing in r. Hence,
t(vw) > k(vwjr) for all r 2 [0; vw) if and only if the condition in Lemma 2 holds.
Step 3: A global comparison of k(v) and t(v). From step 2 and given the condition

in Lemma 2, t(vw) > k(vwjr) for all r 2 [0; vw). From step 1, k0(vjr) > t0(v) for all
v 2 (r; vw]. It now follows that k(vjr) < t(v) for all v 2 [r; vw] and for all r 2 [0; vw).

Proof of Proposition 3. Step 1: Comparing expected revenue. Recall that

ERSPA(rjvs) and ERFPA(rjvs) denote expected revenue for some reserve price r in
the SPA and FPA respectively. Kirkegaard (2012a) showed that for r 2 [0; vw), the
revenue di¤erence between the two auctions is

�(rjvs) = ERFPA(rjvs)� ERSPA(rjvs)

=

Z vw

r

 Z k(vjr)

v

(Jw(vjvw)� Js(xjvs)) dFs(xjvs)ns
!
dFw(vjvw)nw :

Since k(vjr) is strictly below t(v) by Lemma 2, all the terms (Jw(vjvw)� Js(xjvs))
are all strictly positive. This con�rms that the FPA is strictly more pro�table than

the SPA for any �xed reserve price below vw. The auctions are of course revenue

equivalent at �xed reserve prices above vw. Hence, if the SPA has an optimal reserve

price below vw then so does the FPA and the latter is strictly more pro�table. If the

SPA has an optimal reserve price above vw, then the FPA with an optimal reserve

price is no less pro�table. This proves the assertions in the proposition that relate to

the revenue ranking.

Step 2: Comparing optimal reserve prices. If the optimal reserve price in the

SPA is uniquely above vw then the optimal reserve price in the FPA is either the

same or it takes a value strictly below vw. In the remainder, assume therefore that

the SPA has an optimal reserve price below vw. Let this be denoted rSPA. It follows

from the previous step that any optimal reserve price in the FPA must be below vw
as well. Now, for given reserve prices r0 < r < vw, and suppressing vw and vs for
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notational simplicity,

�(rjvs)��(r0jvs) = �
Z r

r0

 Z k(vjr0)

v

(Jw(v)� Js(x)) dFs(x)ns
!
dFw(v)

nw

�
Z vw

r

 Z k(vjr0)

k(vjr)
(Jw(v)� Js(x)) dFs(x)ns

!
dFw(v)

nw :

Recall that by Kirkegaard (2021, Proposition 1), k(vjr0) > k(vjr). Since k(vjr0) is
also strictly below t(v), all the terms (Jw(v)� Js(x)) are once again strictly positive.
Hence,

�(rjvs)��(r0jvs) < 0:

In other words, the revenue di¤erence between the FPA and the SPA become more

pronounced when the reserve price is smaller. Figure 1 illustrates this property.13

By de�nition,

ERFPA(rjvs) = ERSPA(rjvs) + �(rjvs):

Likewise, by de�nition ERSPA(rSPAjvs) � ERSPA(rjvs) for any r (including those
above vw). It has just been established that �(rSPAjvs) > �(rjvs) for all r > rSPA.
Now, imagine, by contradiction, that the FPA has an optimal reserve price, rFPA,

that is below vw but strictly above rSPA. Then, lowering r from rFPA to rSPA in-

creases both ERSPA(rjvs) and �(rjvs). Thus, ERFPA(rjvs) increases, contradicting
the assumption that rFPA > rSPA. Consequently, any optimal reserve price in the

FPA can be no larger than rSPA.

As a �nal comment to this step, note that it was not claimed or proven formally

that the optimal reserve price in the FPA is strictly below the optimal reserve price

in the SPA even when the latter is below vw. Since �(rjvs) is strictly decreasing it
must be di¤erentiable in r almost everywhere. However, this does not rule out that

the derivative is zero at some speci�c r (it cannot have a zero derivative on a proper

interval). In this case, ERFPA(rjvs) = ERSPA(rjvs) + �(rjvs) may technically be
maximized where ERSPA(rjvs) is maximized. It seems �unlikely�that ERSPA(rjvs)
and �(rjvs) happen to have a stationary point at the same place, but it has not been
ruled out.

13This is a coincidence as the proof does not cover the situation in Figure 1, where ns = 1 rather
than ns � 2.
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Step 3: E¢ ciency. A small increase in vs above vts means that the unique optimal

reserve price in the SPA is above vw whereas any optimal reserve price in the FPA

is below vw. The seller prefers the FPA, as proven above. Any bidder, weak or

strong, strictly prefers the FPA to the SPA if his type is in the interval between the

two reserve prices as such a bidder would be excluded from the SPA. This proves

that any weak bidder strictly prefers the SPA ex ante. It will next be shown that

any strong bidder with a higher type also prefers the FPA. Thus, any strong bidder

strictly prefers the FPA ex ante.

Consider �rst strong bidders with types at or below bv. All these types strictly
prefer the FPA if bv < rSPA as they are e¤ectively excluded from the SPA. Thus,

assume now that bv � rSPA. Types below rSPA prefer the FPA for the same reason

as before, which leaves types in
�
rSPA; bv� to consider for now. In the FPA a strong

bidder with type bv submits a bid identical to the bid submitted by a weak bidder
with type vw, bw. In order for bw to be rational to weak bidders, it must hold that

bw � vw < rSPA. Hence, a strong bidder in the FPA can outbid all the weak bidders
and all the strong bidders with type below bv by submitting a bid below vw. In other
words, his payo¤ is at least

(v � vw)Fs(bvjvs)ns�1 � (v � vw)Fs(vjvs)ns�1 > �v � rSPA�Fs(vjvs)ns�1
when his type is v 2

�
rSPA; bv�. In the SPA, a bid of vw does not even meet the

reserve price. In fact, the expression on the far right hand side is an upper bound on

expected payo¤ to a type v bidder in equilibrium in the SPA. To see this, recall that

he wins with probability Fs(vjvs)ns�1 in equilibrium but that he must pay at least

rSPA when he wins. Thus, types below bv prefer the FPA.
For types above bv, remember that Myerson (1981) has shown that expected utility

in any auction can be calculated by integrating winning probabilities. Letting qFPAs (x)

denote the winning probability of type x in the FPA, this means that expected utility

to a strong bidder with type v � bv in the FPA with reserve rFPA < vw is
UFPAs (v) =

Z v

rFPA
qFPAs (x)dx

= UFPAs (bv) + Z v

bv q
FPA
s (x)dx:

It has just been established that UFPAs (bv) is higher than its counterpart in the SPA.
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Likewise, the strong bidder wins at least as often in the FPA as in the SPA when his

type is above bv. Hence, qFPAs (x) is no smaller than it would have been in the SPA.

In sum, UFPAs (v) is therefore higher than in the SPA. It now follows that all types

above rFPA strictly prefers the FPA. Hence, the FPA is strictly preferable to the SPA

ex ante to all bidders as well as to the seller.

Proof of Proposition 4. The proof relies on extending the result in Lemma 2

and then applying the general arguments in the proof of Proposition 3. The proof

of Proposition 3 made use of the assumption that g(v) = 1 only in order to invoke

Lemma 2. If the result in Lemma 2 holds for some other g(v), then Proposition 3

applies to that environment as well.

Lemma 2 proved that k(vjr) < t(v) for all v 2 [r; vw] in the uniform model when

r 2 [0; vw). This was a consequence of two properties: (1) t0(v) = 1 < k0(vjr) and
(2) k(vwjr) < t(vw) when vs > c(ns; nw)vw. In the following it will be shown that

k(vjr) < t(v) for all v 2 [r; vw] still holds on the �relevant domain� when (2) is

satis�ed because both of the properties just identi�ed move in the right direction.

The �relevant domain�here is the set of reserve prices for which Jw(rjvw) > 0. The
reason is that, by (1), the optimal reserve price in the SPA, should it be below vw,

must satisfy Jw(rjvw) > 0. Thus, it is su¢ cient to prove that �(rjvs) is strictly
positive and decreasing on this set of reserve prices in order to conclude that the FPA

is weakly more pro�table and have a weakly lower reserve price.

Step 1: Comparing the slopes of k(v) and t(v). Fix a reserve price, r, for which

Jw(rjvw) > 0. Suppressing vw and vs, recall that t(v) is de�ned by Js(t(v)) = Jw(v).
It follows that t0(v) = J 0w(v)

J 0s(t(v))
. Thus, t0(v) � 1 if J 0w(v) � J 0s(t(v)). Note that

J 0i(x) = 2 +
g0(x)

g(x)

G(vi)�G(x)
g(x)

= 2 +
g0(x)

g(x)
x� g

0(x)

g(x)
Ji(x):

Recall that t(v) > v and that by de�nition Js(t(v)) = Jw(v) > 0 for all v � r. Since
g(x) is log-concave, it now follows that

g0(t(v))

g(t(v))
Js(t(v)) �

g0(v)

g(v)
Jw(v) for all v � r:
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Likewise, (2) implies that
g0(v)

g(v)
v � g0(t(v))

g(t(v))
t(v):

It follows that J 0w(v) � J 0s(t(v)). In other words, t
0(v) � 1 for all v � r when r is

such that Jw(r) > 0. At the same, the argument in Lemma 2 that k0(vjr) > 1 holds
for any g(v). Thus, t0(v) � 1 < k0(vjr).
Step 2: Comparing the end-points of k(v) and t(v). Given the assumption that

vs > c(ns; nw)vw, the proof of Lemma 2 establishes that k(vwjr) is lower than t(vw)
when g(v) = 1. Since log-concavity of g(v) and (2) together imply that g(v) is

(weakly) increasing, it follows that Fi(vjvi) dominates the uniform distribution in

terms of the likelihood-ratio and therefore in terms of the reverse hazard rate. Hub-

bard and Kirkegaard (2019, Proposition 3) prove that k(vwjr) decreases when distri-
butions change in this manner. The statement of their result assumes that nw � 2,
but they do not assume that Fs dominates Fw in terms of the reverse hazard rate.

The role of the nw � 2 assumption is to ensure that a weak bidder bids r in the FPA
only if his type is r (rather than for a mass of higher types). This gives an initial

condition that is crucial to the proof. In the current setting, however, Fs does in

fact dominate Fw in terms of the reverse hazard rate. This implies that even if there

is only a single weak bidder, he bids r only if his type is r. The reason is that a

weak bidder bids more aggressively than the strong bidders and competition among

the two or more strong bidders ensure that they bid r only if their type is r. Thus,

the initial conditions are the same as in the proof of Hubbard and Kirkegaard (2019,

Proposition 3), even when nw � 1. Thus, k(vwjr) is lower than it would be in the
uniform model. At the same time, t(vw) is higher under the condition in (2) than

when g(v) = 1, as explained in the text preceding the proposition. This means that

it is still the case that k(vwjr) < t(vw).
Step 3: Invoking Proposition 3. Steps 1 and 2 establish that k(vjr) < t(v) for

all v 2 [r; vw] when r < vw and Jw(rjvw) > 0. It follows from the arguments in the

proof of Proposition 3 that �(rjvs) is strictly positive and strictly decreasing on this
set of reserve prices. Proposition 4 then follows.
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Excerpt from Kirkegaard (2021) �NOT FOR PUB-

LICATION

Describing the problem: The supports of Fs and Fw are [vs; vs] and [vw; vw],
respectively. Assume that vs > vw > vs � vw. It is also assumed that Fs dominates
Fw in terms of the reverse hazard rate, Fw �rh Fs, or

fs(v)

Fs(v)
� fw(v)

Fw(v)
for all v 2 (vs; vw]: (3)

In other words, Fs(v)
Fw(v)

is non-decreasing on (vs; vw].

I �rst outline two formulations of the problem. To begin, let 'i(b) denote bidder

i�s inverse bidding strategy, b 2
�
r; bi
�
, i = s; w. It follows from Lebrun�s (2006)

equilibrium characterization that

bv = min�vs; ns
ns � 1

vw �
1

ns � 1
bw

�
: (4)

On the range of bids where both groups of bidders are active,
�
r; bw

�
, 'w(b) and 's(b)

solve the system of di¤erential equations described by

d

db
lnFi('i(b)) =

1

ns + nw � 1

�
nj

'j(b)� b
� nj � 1
'i(b)� b

�
; (5)

i; j = s; w, i 6= j, with boundary conditions 'w(bw) = vw and 's(bw) = bv. Note that
if bv < vs, then '0w(bw) = 0, by (4). Lebrun (2006) proves that '0i(b) > 0 for all interior
bids, however.

Second, consider the formulation of the problem in terms bw(v) and k(v). If his

type is v, a weak bidder�s problem can be thought of as deciding which type, x, to

mimic. His problem is thus to maximize

(v � bw(x))Fs(k(x))nsFw(x)nw�1:

Similarly, a strong bidder with type k(v) who bids in the common range maximizes

(k(v)� bw(x))Fs(k(x))ns�1Fw(x)nw :
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By de�nition of equilibrium, bidders� payo¤s are maximized when x = v. When

v 2 (r; vw), the �rst order conditions yield the system of di¤erential equations

k0(v) =
Fs(k(v))

fs(k(v))

fw(v)

Fw(v)
T (k(v); bw(v); v)

b0w(v) =
fw(v)

Fw(v)
(k(v)� bw(v)) [(ns � 1)T (k(v); bw(v); v) + nw] ; (6)

where

T (k; bw; v) =
nw

k�bw
v�bw � (nw � 1)

ns � (ns � 1)k�bwv�bw

To compare this formulation of the problem with the previous one, the boundary

conditions are that k(vw) = bv and bw(vw) = bw.14 Note that T (k; bw; v) R 1 if and

only if k R v. Likewise, holding bw and v �xed, T (k; bw; v) is strictly increasing in k.
It also holds that @T (k;bw;v)

@bw
R 0 if and only if k R v. These properties will be used

repeatedly. N

Lemma (Kirkegaard (2021, Lemma 1)): Assume r 2 [vs; vw). Then, k(v) > v
for all v 2 (r; vw].

Proof. Given these preliminaries it is now possible to prove Lemma 1. Recall that
k(vw) > vw. To illustrate the proof idea, assume �rst that the inequality in (3) is

strict. Assume there exists some v0 2 (r; vw] for which k(v0) = v0. Since T = 1 at

such a point,

k0(v0) =
Fs(v0)

fs(v0)

fw(v0)

Fw(v0)
< 1:

Thus, increasing v beyond v0 leads to the conclusion that k(v) � v. However, this

contradicts the equilibrium feature that k(vw) > vw. The idea is the same when the

inequality in (3) is weak. More formally, assume once again that there exists some

v0 2 (r; vw) for which k(v0) = v0. Based on this �initial condition�, the next step is to
obtain the solution to the system of di¤erential equations as v increases beyond v0 (the

solution to this initial value problem is unique given the di¤erentiability assumptions

imposed on the primitives). To begin, the guess is made that the solution satis�es

14In equilibrium, k0(v) > 0 and b0w(v) > 0. Note, however, that if bv < vs then T (k(v); bw(v); v)
goes to in�nity as v approaches vs, by (4).
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k(v) � v for all v � v0. Then, T � 1, and it follows that

d

dv
lnFs(k(v)) =

fs(k(v))

Fs(k(v))
k0(v) � fw(v)

Fw(v)
=
d

dv
lnFw(v);

or
d

dv
ln
Fs(k(v))

Fw(v)
� 0

independently of bw(v). By Gronwall�s inequality, the actual solution is then bounded

above by the solution that would be obtained if the above inequality had been replaced

by an equality, in which case ln Fs(k(v))
Fw(v)

would be constant. Hence, using the initial

condition that k(v0) = v0,

ln
Fs(k(v))

Fw(v)
� ln Fs(v0)

Fw(v0)
: (7)

However, since v � v0 reverse hazard rate dominance implies that

Fs(v)

Fw(v)
� Fs(v0)

Fw(v0)
;

and so (7) necessitates that k(v) � v. Thus, the initial guess that k(v) � v for all

v � v0 when k(v0) = v0 is veri�ed. The proof is then completed in the same manner
as before. In particular, the implication that k(vw) � vw violates the equilibrium

property that k(vw) > vw. Hence, there can be no v0 2 (r; vw) for which k(v0) = v0.
By continuity, it then follows that k(v) > v for all v 2 (r; vw].

Proposition (Kirkegaard (2021, Proposition 1)): Assume ns � 2, nw � 1. If

vw > r
0 > r � vs then

k(vjr0; ns; nw) < k(vjr; ns; nw) for all v 2 [r0; vw):

Proof. I �rst establish that the initial conditions are that bw(r) = r and k(r) = r.
Lebrun (2006) shows that in general 'i(r) = r for all but at most one bidder i; see

his conditions (20) and (200) along with his discussion on page 143. Stated di¤erently,

it is possible that 'i(r) > r for exactly one bidder, such that bidder i has a mass of

types that bids r. However, since strategies within any given group is symmetric and

ns � 2, no strong bidder can bid r for a mass of types. The same holds for weak
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bidders if nw � 2. This leaves the case where nw = 1. Compared to Lebrun (2006),
however, here it is assumed that reverse hazard rate dominance applies. By Lemma

1, the weak bidder is more aggressive than the strong bidders, for comparable types.

Thus, the weak bidder cannot, in equilibrium, be bidding r for a mass of types. In

short, it must hold that 'i(r) = r for all bidders in the current model. Equivalently,

the initial conditions to the system in (6) are that k(r) = r and bw(r) = r.

Let bv denote the strong bidders�cut-o¤ type and bw the weak bidders�maximum
bid when the reserve price is r. Let bv0 and b0w denote their counterparts when the
reserve price increases to r0. Note �rst that if bw = b

0
w then bv = bv0, by (4). The

system of di¤erential equations are then characterized by the same boundary condi-

tions regardless of whether the reserve price is r or r0. Thus, the system is the same

on b 2 (r0; bw] in either case. Given the di¤erentiability assumptions imposed on the
primitives, the unique solution to the two problems must then coincide on b 2 (r0; bw].
Hence, in the limit, bw(r0jr0) = bw(r0jr). However, the initial conditions when the re-
serve price is r0 requires bw(r0jr0) = r0, whereas equilibrium bidding when the reserve

price is r < r0 satis�es bw(r0jr) < r0. This contradicts the previous conclusion that

bw(r
0jr0) = bw(r0jr). Thus, in equilibrium, bw 6= b

0
w.

Consider next the possibility that bw > b
0
w, implying that bv0 � bv, by (4). Assume

�rst that bv0 > bv. Hence, for v close to vw, k(vjr0) is strictly above k(vjr) while bw(vjr0)
is strictly below bw(vjr), or k(vwjr0) = bv0 > bv = k(vwjr) and bw(vwjr0) = b0w < bw =
bw(vwjr). Reducing v from vw, �nd the nearest value, v0, (if one exists) where one

of the new endogenous functions crosses its old counterpart. The argument in the

previous paragraph rules out that k(v0jr0) = k(v0jr) and bw(v0jr0) = bw(v
0jr) at the

same time. There are two remaining cases. Assume bw(v0jr0) = bw(v0jr) but k(v0jr0) >
k(v0jr). Then, from (6), b0w(v

0jr0) > b0w(v0jr). This contradicts that bw(vjr0) < bw(vjr)
for v > v0. Assume instead that k(v0jr0) = k(v0jr) but bw(v0jr0) < bw(v

0jr). Then,
again from (6), k0(v0jr0) < k0(v0jr) if k(v0jr0) = k(v0jr) > v0. However, this contradicts
that k(vjr0) > k(vjr) for v > v0.
Next, assume that bw > b

0
w but that bv0 = bv. This necessitates bv0 = bv = vs. It can

now be seen that k(vjr) is steeper than k(vjr0) near vw. Hence, k(vjr0) > k(vjr) for v
close to, but strictly below, vw. By continuity, it is also the case that bw(vjr0) < bw(vjr)
in such a neighborhood. The previous arguments can then be repeated to obtain a

contradiction.

Hence, it has now been shown that bw < b
0
w, thereby implying that bv0 � bv. Stated

40



di¤erently, bw(vwjr) < bw(vwjr0) and k(vwjr) � k(vwjr0). Moreover, either k(vwjr) >
k(vwjr0) or k(vjr) is �atter than k(vjr0) near vw. In either case, bw(vjr) < bw(vjr0)
and k(vjr) > k(vjr0) when v is close to vw. Arguments like those above can then be
used to prove that these inequalities are unchanged as v is reduced from vw to r0.

Proposition (Kirkegaard (2021, Proposition 3)): Assume ns � 2, nw � 1, and
r 2 [vs; vw). Then k(vjr; ns; nw)! v for all v 2 (r; vw] as ns !1 or nw !1.

Proof of Proposition 3. Lemma 1 establishes the lower bound that k(v) > v for

all v 2 (r; vw]. An upper bound on k(v) is derived next. The proof then concludes
by showing that the upper bound converges to v as the number of bidders goes to

in�nity.

Using (5) and the condition that '0w(b) � 0 yield the conclusion that

ns
k(v)� bw(v)

� ns � 1
v � bw(v)

� 0

or

k(v) � ns
ns � 1

v � 1

ns � 1
bw(v) (8)

for all v 2 (r; vw]. Since bw(v) is bounded above by v, the last term in (8) goes to

zero as ns !1. Since the �rst term converges to v, it now follows that k(v)! v as

ns !1.
Next, consider changes in nw instead. In equilibrium, bw(v) � v. At the same

time, it follows from Myerson (1981) that for any v 2 (r; vw],

(v � bw(v))Fw(v)nw�1Fs(k(v))ns =
Z v

r

Fw(x)
nw�1Fs(k(x))

nsdx

or

bw(v) = v �
Z v

r

�
Fw(x)

Fw(v)

�nw�1�Fs(k(x))
Fs(k(v))

�ns
dx

� v �
Z v

r

�
Fw(x)

Fw(v)

�nw�1
dx! v as nw !1:

Thus, bw(v)! v as nw !1. Once again, (8) now implies that k(v)! v as nw !1.

41



Excerpt from Hubbard and Kirkegaard (2019) �

NOT FOR PUBLICATION

Hubbard and Kirkegaard (2019, Proposition 3)

Remark: The following describes Hubbard and Kirkegaard�s (2019) Proposition 3

in its original form but with notation that �ts the current paper. This includes the

assumption that nw � 2. The proof of Proposition 4 in the current paper explains

why this can be relaxed to nw � 1 in the current setting. To apply Hubbard and

Kirkegaard (2019, Proposition 3), think of Fi as being the uniform distribution and

Hi as being the new distribution derived from a density function that satis�es (2).

Fix the size of the two groups, ns; nw � 2 and the supports [vs; vs] and [vw; vw],
respectively. Let v = maxfvs; vwg. We let the pair of distributions change from
(Fs; Fw) to (Hs; Hw). Recall that Hi (strictly) dominates Fi in terms of the reverse

hazard rate if
hi(v)

Hi(v)
>
fi(v)

Fi(v)
for all v 2 (vi; vi]:

Borrowing from Lebrun (1998), we will write Hi � Fi if the above holds. Here, we

will assume that Hi either strictly dominates Fi in terms of the reverse hazard rate

or is identical to Fi. Borrowing from Lebrun (1998) once again, this will be denoted

Hi � Fi.
Let (bvF ; bFw) and (bvH ; bHw ) denote the equilibrium values of (bv; bw) when the dis-

tributions are (Fs; Fw) and (Hs; Hw), respectively. The characterization in Hubbard

and Kirkegaard (2019, Proposition 1) implies that bv is non-increasing with bw.
Proposition (Hubbard and Kirkegaard (2019, Proposition 3)): Assume Hi �
Fi, i = s; w and ns; nw � 2. Assume there is a binding reserve price in place, with

r 2 (v;minfvs; vwg). Then, b
H

w � b
F

w and thus bvH � bvF . Consequently, if bid-

separation occurs under (Fs; Fw) it also occurs under (Hs; Hw); i.e., when bidders

become stronger.

Proof. Let bidder i�s inverse bidding strategy be denoted 'Fi (b) and '
H
i (b) in the

two scenarios where distributions are (Fs; Fw) and (Hs; Hw), respectively (recall that

equilibrium is unique). The case where Hs = Fs and Hw = Fw is uninteresting.

Thus, assume in the remainder that Hs � Fs and/or Hw � Fw. The original system
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of di¤erential equation can be written as

'0i(b) =
1

ns + nw � 1
Fi ('i(b))

fi ('i(b))

�
nj

'j(b)� b
� nj � 1
'i(b)� b

�
(9)

where j 6= i, i = s; w.
Assume by contradiction that b

H

w < b
F

w, which by Hubbard and Kirkegaard (2019,

Proposition 1) [or (10) in the next section] implies bvH � bvF . Hence, 'Hi (bHw ) > 'Fi (bHw ),
i = s; w. Now move leftwards (reducing b) from b

H

w . Let b
0 > r denote the �rst (i.e.

highest) bid for which 'Hi (b
0) = 'Fi (b

0) for some (or both) i, if it exists. If it exists,

there are two possibilities. One possibility is that the crossing occurs at the same

place for both i = s and i = w, i.e. 'Hs (b
0) = 'Fs (b

0) and 'Hw (b
0) = 'Fw(b

0). The

bracketed term in (9) is then the same for both scenarios. However, since Hi � Fi

for some i, it follows that 'H0i (b
0) < 'F 0i (b

0). However, this contradicts the fact that

'Hi (b) > 'Fi (b) to the right of b
0. The other possibility is that 'Hi (b

0) = 'Fi (b
0) but

'Hj (b
0) > 'Fj (b

0), j 6= i. The conclusion is again that 'H0i (b0) < 'F 0i (b0), because the
bracketed term in (9) is smaller (and the �rst term is no larger) when distributions

are (Hs; Hw) compared to (Fs; Fw). The same contradiction is thus achieved. It now

follows that 'Hi (b) > '
F
i (b) for all b 2 (r; b

H

w ], i = s; w. Assuming that Hs � Fs (the
proof is similar if Hw � Fw instead) it follows from the bidders��rst order conditions
that

d

db
lnFw('

F
w(b))

nwFs('
F
s (b))

ns�1 =
1

'Fs (b)� b

>
1

'Hs (b)� b

=
d

db
lnHw('

H
w (b))

nwHs('
H
s (b))

ns�1;

or

d

db

24ln Fw('
F
w(b))

Fw('Fw(b
H

w ))

!nw  
Fs('

F
s (b))

Fs('Fs (b
H

w ))

!ns�135 > d

db

24ln Hw('
H
w (b))

Hw('Hw (b
H

w ))

!nw  
Hs('

H
s (b))

Hs('Hs (b
H

w ))

!ns�135
for all b 2 (r; bHw ]. Evaluated at b = b

H

w , the bracketed term on either side of the

inequality are both zero. Since r > v, the bracketed term on the left converges to a

�nite value as b ! r. Moreover, since the bracketed term on the left is steeper in b

than the bracketed term on the right, the latter must also converge to a �nite value,
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with

ln

 
Fw('

F
w(r))

Fw('Fw(b
H

w ))

!nw  
Fs('

F
s (r))

Fs('Fs (b
H

w ))

!ns�1
< ln

 
Hw('

H
w (r))

Hw('Hw (b
H

w ))

!nw  
Hs('

H
s (r))

Hs('Hs (b
H

w ))

!ns�1

Since ('Fs ; '
F
w) are equilibrium strategies, it must hold that 'Fi (r) = r, i = s; w. If

('Hs ; '
H
w ) are equilibrium strategies as well, then it also holds that '

H
i (r) = r, i = s; w,

and we have 
Fw(r)

Fw('Fw(b
H

w ))

!nw  
Fs(r)

Fs('Fs (b
H

w ))

!ns�1
<

 
Hw(r)

Hw('Gw(b
H

w ))

!nw  
Hs(r)

Hs('Hs (b
H

w ))

!ns�1
or  

Hw('
H
w (b

H

w ))

Fw('Fw(b
H

w ))

!nw  
Hs('

H
s (b

H

w ))

Fs('Fs (b
H

w ))

!ns�1
<

�
Hw(r)

Fw(r)

�nw �Hs(r)
Fs(r)

�ns�1
which, since 'Hi (b

H

w ) > '
F
i (b

H

w ), implies 
Hw('

H
w (b

H

w ))

Fw('Hw (b
H

w ))

!nw  
Hs('

H
s (b

H

w ))

Fs('Hs (b
H

w ))

!ns�1
<

�
Hw(r)

Fw(r)

�nw �Hs(r)
Fs(r)

�ns�1

However, the assumption thatHi � Fi (Hi = Fi) is equivalent to d
dv
H(v)
F (v)

> 0 ( d
dv
H(v)
F (v)

=

0). Consequently, the above inequality must be violated. In other words, ('Hs ; '
H
w )

cannot form an equilibrium.

Hubbard and Kirkegaard (2019, Proposition 5)

Preliminaries: There are ns � 2 strong bidders, with Fs(v) = v
vs
, v 2 [0; vs]. There

are nw � 1 weak bidders, with Fw(v) = v
vw
, v 2 [0; vw], and vs > vw > 0. Let bw and

bs denote the bid of a weak bidder with type vw and a strong bidder with type vs,

respectively. For ease of notation in formulating the result, let n = ns+nw�1 denote
the number of rivals faced by any bidder. Finally, de�ne �(ns; nw) and �(ns; nw),
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respectively, as

�(ns; nw) =
(ns + 1)n�

q
(ns + 1)

2 n2 � 4nwnsn
2nw

;

�(ns; nw) =
ns � �(ns; nw)

ns � 1
;

and note that �(ns; nw) 2 (0; 1) while �(ns; nw) > 1. Of course, both functions are
independent of vs and vw. It can be shown that �(ns; nw) is strictly increasing in

both its arguments and that �(ns; nw) is strictly decreasing in both its arguments.

Proposition (Hubbard and Kirkegaard (2019, Proposition 5)): Assume Fi(v) =
v
vi
, v 2 [0; vi], i = s; w, with vs > vw > 0. Assume ns � 2, nw � 1. Equilibrium

properties depend on the relative di¤erence between supports, vs
vw
:

1. If vs
vw
� �(ns; nw) (the supports do not di¤er too much), then both kinds of

bidders share the same maximum bid, bw = bs and bv = vs, with
bw =

n

vsnw + vwns
vsvw:

2. If vs
vw
> �(ns; nw) (the supports di¤er considerably), then bid-separation occurs,

bw < bs and bv < vs, with
bw = �(ns; nw)vw

and bv = �(ns; nw)vw:
Moreover, the equilibrium is continuous in all the parameters, ns; nw; vs and vw.

Proof. It follows from Lebrun (2006) that for any bw 2 (0; vw) candidate, bv is
uniquely determined by

bv = min�vs; ns
ns � 1

vw �
1

ns � 1
bw

�
: (10)

Hubbard and Kirkegaard (2019) explain how (10) is derived. The relationship in (10)

characterizes a necessary condition on any candidate (bv; bw) pair. The next step is to
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use mechanism design arguments to derive a second necessary condition. The �nal

step combines these two conditions to establish the proposition.

As in any mechanism design argument, the equilibrium allocation plays an impor-

tant role. Thus, let qi(v) denote the probability that a bidder in group i, i = s; w,

wins the auction if his type is v. Letting EUi(v) denote such a bidder�s expected

utility, Myerson (1981) has shown that

EUi(v) = EUi(0) +

Z v

0

qi(x)dx.

It is easily seen that EUi(v0) = 0. Consider now the highest types, vs and vw,

respectively. First, observe that

EUs(vs) = EUs(bv) + Z vs

bv qi(x)dx

=
�bv � bw�� bv

vs

�ns�1
+

Z vs

bv
�
x

vs

�ns�1
dx;

since type x � bv outbids all weak bidders with probability one and thus wins if all rival
bidders in group i have types that are below x. Conveniently, this expression does

not require any knowledge of qs(x) for x < bv. Integrating now yields the conclusion
that Z vs

0

qs(x)dx =
�bv � bw�� bv

vs

�ns�1
+
1

ns

vnss � bvns
vnss

: (11)

Similarly, since

EUw(vw) =
�
vw � bw

�� bv
vs

�ns
;

it follows that Z vw

0

qs(x)dx =
�
vw � bw

�� bv
vs

�ns
: (12)

The ex ante probability that any given bidder wins the auction takes a particularly

useful form when distributions are uniform, sinceZ vi

0

qi(x)fi(x)dx =
1

vi

Z vi

0

qi(x)dx:

Since the auction has no reserve price, the item will be sold for sure. In other words,
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the ex ante winning probabilities must aggregate to one, or

ns
1

vs

Z vs

0

qs(x)dx+ nw
1

vw

Z vw

0

qw(x)dx = 1: (13)

Combining (11) and (12) with (13) yields the necessary condition that

bw =
n

bwns + nwbvvwbv (14)

for bv 2 [0; vs], or, stated di¤erently,
bv = vwnsbw

nw
�
vw � bw

�
+ vw (ns � 1)

(15)

with the restriction that bw is such that bv 2 [0; vs].
In summary, any equilibrium (bv; bw) pair must satisfy both (15) and (10). Thus,

the next step is to characterize what turns out to be the unique (bv; bw) pair that sat-
is�es both conditions. First, note that the right hand side of (15) is strictly increasing

in bw and ranges from 0 to ns
ns�1vw as bw increases from 0 to vw. However, the term

ns
ns�1vw �

1
ns�1bw on the right hand side of (10) is strictly decreasing in bw and ranges

from ns
ns�1vw to vw as bw increases from 0 to vw. Thus, the two equations (i.e. (15)

and bv = ns
ns�1vw�

1
ns�1bw) must have a unique intersection with bw 2 (0; vw). We �rst

identify this intersection and then subsequently check whether it satis�es the feasi-

bility condition that bv 2 [0; vs]. Equalizing these two equations yields a quadratic
equation in bw. The larger root can be ruled out, since it yields the conclusion that

bw > vw. The smaller root is bw = �(ns; nw)vw, for which bv = �(ns; nw)vw. This can-
didate satis�es the �nal feasibility condition that bv � vs if and only if �(ns; nw) � vs

vw
.

This proves the second part of the proposition. If �(ns; nw) > vs
vw
, the condition

that bv � vs instead binds. Nevertheless, (15) and (14) must be satis�ed. The latter
establishes the characterization in the �rst part of the proposition.

Continuity follows from the continuity of (15) and (10). Of course this implies

that when �(ns; nw) is identical to vs
vw
, the equilibrium pair (bv; bw) in the two parts of

the proposition coincide.
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