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Abstract

Economic agents are motivated to undertake costly actions by the prospect

of being rewarded for successes and punished for failures. But what determines

what a success looks like? This paper endogenizes the criteria for success in

an otherwise standard principal-agent model with risk neutrality and limited

liability. The set of feasible contracts is constrained by incentive constraints

and possibly by a budget constraint. The �rst-order approach is not required

to solve the problem. If the principal manipulates the criteria for success only

to lower implementation costs, and depending on which type of constraint is

more restrictive, the second-best action may be above or below the �rst-best

action. In a class of problems where the principal�s payo¤ depends directly on

the criteria for success, the second-best solution features either more stringent

criteria for success or a lower action (or both) than the �rst-best solution.
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1 Introduction

The following new principal-agent model is proposed and studied. The agent�s �per-

formance� is a continuous variable whose distribution is determined by the agent�s

action. However, the principal is not able to perfectly observe performance. For ex-

ample, consider a salesman (agent) who has been instructed to sell a product at some

price p. The agent�s e¤orts at persuading the customer will make the latter revise

his willingness-to-pay for the product. In other words, the agent�s �performance�

is described by the customer�s resulting willingness-to-pay. However, the customer�s

willingness-to-pay is inside his head and cannot be observed by outsiders. It can only

be observed whether he decides to purchase the product or not. In other words, the

agent�s employer (principal) knows only whether the willingness-to-pay is above or

below p. Thus, even though �background performance�is continuous, the observable

signal on which remuneration is based is binary. Moreover, the criterion for success

is endogenously determined by p, which is after all dictated by the principal. For

another example, a �rm who is about to market a product newly developed by one

of its engineers must decide upon the stringency of product testing prior to launch.

A similar situation may occur even when performance can be observed but the

reward structure is restricted. This is often the case when a pass/fail test is taken.

The examiner may be able to obtain a �ne measure of the examinee�s performance,

yet much of this information is lost in the coarse marking scheme. The criterion

for success �the pass mark or the di¢ culty of the test � is also often endogenous.

For instance, medical boards determine through testing whether the medical school

graduate does or does not meet the bar to be awarded a medical license. It is irrelevant

if the candidate passes by a wide or a narrow margin. In other words, the medical

board decides if the candidate is admitted to the �club�, but it is not practical to

make his compensation contingent on his precise score on the test.

Performance is one-dimensional in the model and the criterion for success is there-

fore essentially a performance threshold. If this is exogenous, the model reduces to

a standard two-outcome model. However, when it is endogenous, it is entirely pos-

sible that the optimal threshold depends on the action that the principal wishes to

induce. The standard literature typically does not worry about where the probability

of success comes from. One way of thinking about the current model is that a �mi-

crofoundation�of sorts is provided, linking the endogenous probability of success to
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an underlying performance technology. The model thus allows us to ask whether the

criterion for success is more or less demanding as varying levels of e¤ort is induced.

Now return to the salesman example. Within this principal-agent relationship, the

��rst-best�in the absence of moral hazard involves some e¤ort level and a price that

is set to maximize monopoly pro�ts (this ignores the e¤ects on parties outside the

contractual relationship, such as the consumer). Thus, under asymmetric information,

two sources of distortions from the �rst-best are possible; the employer may decide to

distort the action, the price, or both. Thus, the model is richer than the standard two-

outcome model, which misses the dependence between one of the principal�s choice

variables (the price) and the probability of success.

The criterion for success serves a dual purpose. It manipulates implementation

costs, and it may also, as in the salesman example, be intrinsically important to the

principal. It accomplishes the former by changing the quality of information about

the agent�s e¤ort. In this sense, the monitoring technology is endogenized. As in Li

and Yang (2020), discussed in more detail below, monitoring is tied to, and disciplined

by, an underlying performance technology that is outside the principal�s control. In

contrast, in the more traditional literature, the principal can choose from an ad hoc

set of monitoring technologies. Examples include Dye (1986) and Kim (1995).

The agent is assumed to be risk-neutral and protected by limited liability. This

makes it possible to characterize implementation costs in a succinct and tractable

way. Three versions of the problem are then analyzed. The �rst two versions assume

that the principal does not directly care about the criterion for success, but uses it

only to manipulate the cost of incentivizing the agent. Thus, this is a pure monitoring

problem. These two versions of the model di¤er in the nature of the constraint that

limits the feasible set of contracts.

The �rst and shorter version is inspired by the dominant approaches in the existing

literature. The �rst-order approach (FOA) is assumed to be valid but the principal

faces a budget constraint.1 Thresholds that are very large require substantial bonuses

to be incentive compatible. The budget constraint rules out such thresholds. However,

smaller actions can feasibly be induced with larger thresholds.

The second version represents the heart of the paper and departs from the tradi-

1Bounds on payments are analyzed in e.g. Innes (1990), Jewitt, Kadan, and Swinkels (2008), and
Poblete and Spulber (2012). However, these papers assume that performance is perfectly observable.
A more closely related paper by Bond and Gomes (2009) is discussed below.
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tional approach by not relying on the FOA. Instead, the intention is to focus squarely

and exhaustively on the �implementability constraint�. While the FOA simpli�es the

incentive compatibility problem, it requires strong assumptions that are not always

desirable. Without the FOA, there are combinations of actions and thresholds that

simply cannot be implemented because no incentive compatible contract exists.

Crucially, the FOA is not needed to solve the problem. In fact, it is possible to

fully characterize the set of incentive compatibility contracts for any underlying per-

formance technology. However, the shape of the feasible set depends on the properties

of said performance technology. A set of natural regularity properties is identi�ed and

the class of performance technologies that satisfy these properties are singled out for

more detailed study. The FOA is not valid in this class, yet every technology within

it gives rise to qualitatively similar feasible sets. Speci�cally, it is feasible to induce

larger actions alongside larger thresholds.

Note that the two versions give opposite conclusions regarding which actions allow

larger thresholds or more stringent criteria to be used. This is important because it is

a fundamental feature of the model that more stringent criteria tend to lower incentive

costs. The principal therefore has an incentive to distort the action in such a way

that higher thresholds become feasible. In the �rst version, distorting the action

downwards allows more stringent thresholds to be used, but this is reversed in the

second version. Thus, the second-best action is lower than the �rst-best action in the

�rst model but higher than the �rst-best action in the second model. In either case,

the feasibility constraint binds at the second-best solution and the optimal threshold

is higher than the threshold that optimally implements the �rst-best action.

In general, contracting problems are more complicated when the FOA is invalid.

Kirkegaard (2017) presents an example with a risk averse agent in which the FOA sug-

gests that the second-best action is close to but below the �rst-best action. However,

neither action is in fact implementable. The nearest implementable action is higher,

and for this reason the second-best action turns out to be above the �rst-best.2 Thus,

it is not necessarily surprising that the second-best action may exceed the �rst-best

action. However, the current paper presents a whole class of distribution functions,

disciplined by certain regularity conditions, for which the second-best is higher than

the �rst-best. In this sense, the conclusion is robust within the model.3 Contrary to
2The famous counterexample to the FOA in Mirrlees (1999) exhibits a similar logic, but is

slightly harder to interpret since the payo¤ functions are non-standard.
3In comparison, other standard moral hazard models predict that the second-best is weakly
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Kirkegaard�s (2017) example, the �rst-best action is implementable but only at low

and therefore unpro�table thresholds.

In the third version of the problem, the principal is assumed to intrinsically care

about the criterion for success, as in the salesman example. Consequently, the second-

best solution is not necessarily on the boundary of the feasible set because the princi-

pal may be reluctant to distort the threshold too much. When the �rst-best is interior

and feasible in the second-best problem, the latter features more stringent criteria for

success or a lower action (or both) than the �rst-best solution. In general, both the

threshold and the action are distorted away from the �rst-best. This is typically done

in such a way that the threshold is too high compared to what would be socially op-

timal given the second-best action. In the salesman example, the price then exceeds

the monopoly price for the demand curve induced by the agent�s action.

The distortions identi�ed so far are consequences of the principal�s desire to extract

rent from the agent. However, there are settings in which the principal�s intrinsic

interest in the criterion for success is strong enough to dominate the rent-extraction

motive. In such cases, the second-best contract Pareto dominates the contract that

implements the �rst-best action in the way that is optimal to the principal. It is even

possible that the second-best contract maximizes social surplus among all incentive

compatible contracts, despite limited liability allowing the agent to earn rents.

Various problems with similar �avor have been examined before, but rarely while

comparing the �rst-best and second-best. For instance, other strands of literature

have realized that the salesman�s incentives are in�uenced by the price. Thus, Lal

(1986) and Mishra and Prasad (2004) debate whether it is better to centralize the

pricing decision or delegate it to the agent, contrasting di¤erent assumptions about

who knows a relevant demand state and what the space of contracts is. However, this

literature does not compare �rst-best and second-best actions or prices.

Li and Yang (2020) examine the design of an optimal monitoring technology in

which performance can be partitioned into an exogenously �xed number of categories.

This is more general than the current paper, which only allows a partition into suc-

cess and failure. However, they simply assume that the principal wishes to induce the

highest possible action. Thus, they do not study how the �rst-best and second-best

below the �rst-best action. With risk averse agents, this occurs in the linear-exponential-normal
model and in the two-action model. It also occurs in the Demougin and Fluet (1998) model with a
risk neutral agent that is discussed in Section 6.
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actions di¤er. Moreover, absent a budget constraint it is always possible to imple-

ment the highest action with a su¢ ciently large bonus. Hence, the implementability

problem is minimized. The current paper allows the study of environments consistent

with Li and Yang (2020) (with two categories) while allowing the �rst-best action to

be interior. Then, the second-best action may exceed the �rst-best action, although

this depends on how strongly monitoring costs varies with the threshold.

Bond and Gomes (2009) consider an agent who works on a number of independent

tasks, each of which either succeeds or fails. The agent�s compensation is contingent

on the number of successes. The FOA is not valid because the agent may want to

deviate to the lowest possible e¤ort pro�le (shirking on all tasks). Similarly, the

problem in the present paper is often precisely that the agent is tempted to deviate

to the lowest possible action. Thus, Bond and Gomes (2009) and the current paper

share some methodological similarities and are among the few that study the economic

consequences of the failure of the FOA. However, Bond and Gomes (2009) assume

that the �rst-best solution involves the agent working as hard as possible on each

task. Thus, the only possible distortion in total e¤ort is downwards.

Finally, there is a related literature on what amounts to endogenous criteria for

success in settings where performance is fully observable and agents are risk neutral.

The set of contracts is richer when performance is observable and contractible, but

this does not rule out that optimal contracts take simple forms. Demougin and Fluet

(1998) and Oyer (2000) provide di¤erent conditions under which threshold contracts

are optimal. They assume that the FOA is valid, and their analyses and examples

suggest that the second-best action is below the �rst-best action.

In the current paper, environments are identi�ed in which the FOA is not valid

but where threshold contracts are nevertheless optimal even if performance is fully

observable. Here, the second-best action coincides with the �rst-best action when the

principal does not intrinsically care about the threshold. Beyond these environments

there are settings in which the principal does not bene�t from being able to observe

failing performances. Examples of such situations include the type of inventory prob-

lems studied in Dai and Jerath (2013) and Chu and Lai (2013). The principal incurs

sunk costs to stock products for her agent to sell and she can observe how many units

are sold if the stock is not depleted. The optimal contract then often entails a bonus

that is paid if and only if the stock is exhausted. Thus, threshold contracts remain

optimal in many settings even when performance is more �nely observable.
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2 Model and preliminaries

The principal (she) employs a single agent (he). The agent takes some costly and

unobservable action, a, belonging to some compact interval [a; a]. Given the agent�s

action, his performance is a random variable, X. Let F (xja) denote the corresponding
distribution function, given a. For all a 2 (a; a], assume that there are no mass

points and that the support [x; x], which may be bounded or unbounded, is the same

interval for all a 2 (a; a], with density f(xja) = Fx(xja) that is strictly positive on
[x; x].4 At a = a, the distribution either (i) satis�es these same assumptions or (ii) is

degenerate at x. In the latter case, the agent�s performance is guaranteed to be the

worst possible if he takes the lowest possible action. This case is included because it

is useful in illustrating the workings of the model and because it arises naturally in

some parameterized examples. The derivatives Fa; Faa, fa and their partial and cross

partial derivatives are assumed to exist for all a 2 (a; a]. Assume that Fa(xja) < 0
for all x 2 (x; x) and all a 2 (a; a]. Thus, actions are productive in the sense that
bad outcomes are less likely the harder the agent works.

Actions are normalized such that the agent�s cost function is linear. Thus, the

agent incurs a cost of a when he takes action a. Alternatively, think of the agent�s

action as a decision of what costs to incur. The agent is risk neutral and protected

by limited liability. This assumption makes it possible to succinctly characterize

implementation costs (i.e. the expected wage), but it is not important for the more

fundamental discussion of which contracts are incentive compatible.5 The minimum

wage implied by the limited liability constraint is normalized to zero. The agent�s

outside option is assumed to be so poor that the participation constraint never binds.

The principal either does not directly observe the agent�s performance or his per-

formance is not veri�able. Instead, what is observable and veri�able is whether the

agent�s performance exceeds a (deterministic) threshold t. Thus, [x; x] is partitioned

into two intervals, [x; t) and [t; x]. The agent fails if his performance falls in the �rst

interval and succeeds otherwise. Note that the threshold t in this way describes the

criterion for success. The higher t is, the more stringent is the criterion.

Thus, there are two veri�able outcomes. The novelty is that the criterion for

4A subscript indicates the partial derivative with respect to the subscripted variable.
5As long as the agent has quasi-linear utility, the bonus from succeeding can be interpreted

as being measured in �utils� rather than in monetary terms. The characterization of incentive
compatible contracts carries through under this interpretation.
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success is endogenized. That is, the principal controls what the threshold is. The

stringency of the criterion a¤ects the agent�s incentives and therefore the implemen-

tation costs that the principal faces.

2.1 Properties of incentive compatible contracts

To understand the agent�s incentives, �x a threshold t 2 (x; x) and a bonus b that
is paid if the outcome is a success. Given the slack participation constraint, the

principal pays nothing if the outcome is a failure. The agent�s expected utility from

action a is b (1� F (tja)) � a. Now assume that the principal aims to induce some
speci�c interior action a while holding �xed the threshold t 2 (x; x). Then, b must be
calibrated to ensure that the agent�s �rst-order condition is satis�ed at the intended

action. That is, the bonus is

B(a; t) =
�1

Fa(tja)
:

Hence, if the agent takes the intended action a when o¤ered the bonus B(a; t), his

expected wage is

W (a; t) = �1� F (tja)
Fa(tja)

and his expected utility is

U(a; t) =W (a; t)� a:

A contract speci�es a criterion for success and a bonus if the outcome is a success.

However, since B(a; t) is uniquely nailed down by (a; t), the problem can e¤ectively

be summarized by the pair (a; t). In the following, (a; t) should therefore be read as:

�the principal intends to induce action a by specifying threshold t and committing to

the bonus B(a; t).�The problem is that the �rst-order condition is necessary but not

always su¢ cient for the agent�s utility to attain a global maximum at the intended

action a. Thus, keep in mind that W (a; t) and U(a; t) are valid only as long as (a; t)

is globally incentive compatible, or more precisely when

a 2 argmax
a0
B(a; t) (1� F (tja0))� a0:

A general analysis of the incentive compatibility problem is postponed to Section 4.

The cheapest way to induce action a is to o¤er a zero bonus, regardless of the

threshold. Thus, let B(a; t) = W (a; t) = 0 and U(a; t) = �a. Note that implemen-
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tation costs are generally discontinuous at a (an exception is considered in Section

4.3.1). Similarly, let B(a; t) denote the lowest bonus that can be used to induce action

a with threshold t 2 (x; x), and let W (a; t) and U(a; t) denote the resulting expected
wage and expected utility, respectively. Incentive compatibility may necessitate a

higher bonus than what the �rst-order condition suggests. In other words, using the

�rst-order condition gives lower bounds on B(a; t); W (a; t), and U(a; t).

Holding �xed the threshold, a standard argument proves that a higher bonus must

be o¤ered to induce a higher action. Thus, when the agent is induced to work harder,

he bene�ts not only from a higher bonus but also from a higher probability that

he passes the �xed threshold. This double bene�t increases his expected wage and

more than compensates for the fact that he also incurs higher e¤ort costs. The next

proposition records and proves these properties. Proofs are in Appendix A.

Proposition 1 Fix an interior threshold t 2 (x; x) and assume that actions a and
a0 are implementable, with a0 > a. Then, B(a0; t) � B(a; t), U(a0; t) � U(a; t), and

W (a0; t) > W (a; t):

Next, hold a 2 (a; a) �xed and consider how the contract depends on the threshold
that is used to induce the action. For many of the following results, the monotone

likelihood-ratio property (MLRP) is imposed. In fact, for expositional simplicity a

strict version of the MLRP is used. Under the (strict) MLRP, the likelihood-ratio
fa(xja)
f(xja) is (strictly) increasing in x. An equivalent de�nition is as follows.

Definition (MLRP): The monotone likelihood-ratio property is satis�ed if f(xja)
is strictly log-supermodular in x and a, or

@2 ln f(xja)
@x@a

> 0:

There is a potential trade-o¤ when increasing the threshold. First, the higher the

threshold is, the less likely it is that the bonus is paid out. On the other hand, it

is possible that the bonus must be increased as well. The MLRP implies that the

�rst e¤ect dominates because the bonus increases relatively slowly. Thus, W (a; t) is

strictly decreasing in t. Since the threshold does not directly impact the cost of e¤ort,

U(a; t) is strictly decreasing in t as well.6

6By incentive compatibility and limited liability, U(a; t) � B(a; t)(1� F (tja))� a � �a. Thus,
utility is bounded below and the participation constraint is slack if the outside option is bad enough.
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Proposition 2 Assume that the MLRP is satis�ed. Fix an interior action a 2 (a; a)
and assume that it can be induced with thresholds t and t0, with t0 > t. Then,

W (a; t0) < W (a; t) and U(a; t0) < U(a; t).

2.2 The principal�s problem

The principal is assumed to be risk neutral. The cost W (a; t) of implementing an

incentive compatible (a; t) pair depends on the threshold. Thus, there is generally

an incentive to manipulate the criterion for success in order to manipulate imple-

mentation costs. However, the principal may also take a more direct interest in the

threshold t. The expected bene�t to the principal of (a; t) is �(a; t). Her objective is

therefore to maximize �(a; t)�W (a; t) over incentive compatible (a; t).
The bene�t function may depend directly on the criterion for success. The leading

example is �(a; t) = (t� c)(1� F (tja)). Here, the principal hires a salesman (agent)
to sell a product at price t to a single customer. If successful, the principal incurs

a cost c of supplying the product. As mentioned in the introduction, the agent�s

performance is the willingness-to-pay that he is able to instill in the customer. Given

an action a and a price t, the probability of a success is 1� F (tja), and �(a; t) thus
describes expected pro�ts. Note that �(a; t) is non-monotonic in t in this example.

The threshold t will be said to be �intrinsically important�to the principal whenever

�(a; t) depends on t. This encompasses situations in which it is harder or more costly

for the principal to detect if performance exceeds some thresholds rather than others.

There are also environments in which the principal does not care directly about

the criterion for success. With some abuse of notation, the bene�t function is written

more succinctly as �(a) in those cases. The obvious example is �(a) = E[Xja]. Here,
the agent�s performance can be interpreted as his productivity, which the principal

cares about. However, at the point in time at which the agent must be paid, it can

only be veri�ed whether the performance exceeded a pre-set threshold or not.

Social surplus is the di¤erence between the bene�ts and the e¤ort costs, or

S(a; t) = �(a; t)� a:

The �rst-best benchmark entails maximizing S(a; t).7 Thus, any �rst-best solution

7This de�nition ignores any impact on third parties. For instance, the customer in the salesman
example is impacted by (a; t), but this is disregarded in S(a; t).
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consists of a pair (aFB; tFB). The point here is that t is directly important for welfare

when it is intrinsically important to the principal. Hence, any distortion of the thresh-

old away from tFB is important for welfare reasons. In contrast, t does not matter

for social surplus when the bene�t function takes the form �(a). Stated di¤erently,

there is no unique �rst-best threshold in such cases.

The principal�s second-best problem is to maximize

V (a; t) = �(a; t)�W (a; t):

It is often more useful to think of the principal as the �residual claimant,�since she

claims what is left of social surplus after the risk neutral agent has received his share,

or

V (a; t) = S(a; t)� U(a; t):

Propositions 1 and 2 already reveal important information about W (a; t) and

U(a; t). First, �x the threshold t and assume that there is a unique action that

maximizes S(a; t). This action identi�es the �rst-best action in a world where the

threshold is exogenous. If this action is feasible in the second-best problem, then

V (a; t) is maximized at an action that is no higher. The reason is that at higher

actions, social surplus is strictly lower and the agent is weakly better o¤, hence leaving

less surplus for the principal. Thus, a standard model with exogenous thresholds

predicts that the second-best action is no higher than the �rst-best action.

Second,W (a; t) is strictly decreasing in the threshold. Thus, when the criterion for

success is not intrinsically important, the principal will aim to increase the threshold

as much as possible in order to decrease implementation costs. Hence, an existence

problem may arise because a threshold of x is not incentive compatible �the agent

never succeeds and will therefore pick action a in response.

The following sections consider three di¤erent versions of the model in which the

existence problem does not arise. First, Section 3 assumes that the principal faces

a budget constraint or wage cap. The budget constraint automatically makes it

impossible to implement thresholds close to x.8

Second, Section 4 focuses on the incentive compatibility problem by discarding the

strong assumption that validates the FOA. Under more realistic assumptions on the

8Section 6.2 discusses other ways in which similar existence problems have been addressed in the
literature, including discretizing the signal space or assuming the MLRP is violated.
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distribution function, contracts with large thresholds are not incentive compatible

in the �rst place. Sections 3 and 4 assume that the principal is not intrinsically

interested in the criteria for success.

Third, imagine that the threshold is intrinsically important to the principal and

tFB is interior. If the threshold is important enough, then distorting it too much is

so undesirable that it does not justify the accompanying decrease in implementation

costs. Section 5.1 examines such settings. Section 5.2 assumes that the threshold is

intrinsically important but that one of the constraints from Sections 3 or 4 bind.

3 Budget constraints

Assume that the principal faces a budget constraint. That is, she can o¤er a bonus

of at most b, where b > 0 is bounded above. Assume also that the FOA is valid. This

holds if F (tj�) is globally convex in a, since the agent�s problem is then concave. Thus,
Rogerson�s (1985) Convexity of Distribution Function Condition (CDFC) is imposed.

Definition (CDFC): The Convexity of Distribution Function Condition is satis�ed

if Faa(xja) � 0 for all x 2 [x; x] and all a 2 (a; a].

The CDFC is often criticized. It is used here not because it is a desirable assump-

tion but instead to focus squarely on budget constraints. The next section does the

opposite, by ignoring budget constraints but relaxing the CDFC.

Importantly, thresholds near x violate the budget constraint. The reason is that

failure is almost guaranteed when t is close to x. Thus, it is harder for the agent

to manipulate the chance of success; formally, Fa(tja) ! 0 as t ! x. To maintain

incentives, the bonus would need to grow without bound as t! x.

Proposition 1 implies that larger actions necessitate larger bonuses, given t. Hence,

the larger the action is, the fewer thresholds meet the budget constraint. The next

result describes important qualitative features of the frontier of the feasible set.

Lemma 1 Assume that the MLRP and CDFC hold. For any given b, the set of

actions that can be implemented is an interval of the form [a; aB], where aB � a. The
highest possible threshold, tB(a), that can be used to implement a is weakly decreasing

on [a; aB]. That is, weakly higher thresholds are feasible the smaller the action is.

Turning to optimal contracts, assume that the bene�t function �(a) is independent

of the criterion for success. Thus, the threshold is manipulated with the sole purpose
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of lowering implementation costs. For expositional convenience, assume that aFB is

unique and interior. It is trivial that the second-best action, aSB, is below aFB if the

latter cannot be implemented. Thus, the case where aFB � aB is more interesting.
From Proposition 2, the cheapest feasible way to induce action a > a is to equate

the threshold to tB(a). It has already been observed that for an exogenously �xed

threshold, the second-best action is no higher than the �rst-best action. Endogenizing

the threshold, Lemma 1 implies that the principal has an additional incentive to lower

the action because it enables her to use higher and therefore even cheaper thresholds.

Thus, the second-best action can be no higher than the �rst-best action. As long as

aSB > a, this in turn means that the second-best threshold must be larger than the

threshold that optimally implements aFB, or tSB = tB(aSB) � tB(aFB). In this sense,
the criterion for success is stringent. Indeed, since aSB is small and tSB is large, there

is a smaller probability that the agent is successful.

Proposition 3 Assume that the MLRP and CDFC hold. Assume that the principal�s
bene�t function, �(a), depends only on a and that there is a unique and interior �rst-

best action, aFB. For any given b, any second-best action is no greater than the �rst-

best action, aSB � aFB. If aFB � aB and aSB > a, then tSB = tB(aSB) � tB(aFB).

Example 1: Assume that F (xja) =
�
x
16

�a
, x 2 [0; 16], a 2 [1; 4]. This distribution

satis�es the MLRP and the CDFC and is inspired by an example in Rogerson (1985).

It is assumed that b = B(3; 13) = 8:98. Assuming that �(a) = E[Xja] = 16a
1+a
, the

�rst-best action is aFB = 3. In the second-best problem, tB(aFB) = 13 is the most

pro�table feasible threshold that induces aFB. The resulting contract yields pro�t

of 7:84. In comparison, action a = 1 can be induced at zero cost, yielding pro�t of

8. However, the second-best (obtained numerically) is at (aSB; tSB) = (2:22; 13:66),

which yields expected pro�t of 8:37. N

4 Implementability constraints

This section studies the problem without imposing the CDFC. Thus, the agent�s �rst-

order condition need not be su¢ cient for incentive compatibility. Consequently, not

all (a; t) are generally implementable. To focus on the implementability problem, the

principal is assumed not to be budget constrained.
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4.1 Characterization of the feasible set

It is possible to completely characterize the set of incentive compatible (a; t).9 To

this end, �x t 2 (x; x) and think of it as a parameter. Then, for a �xed bonus b, the
curvature of the agent�s expected utility depends only on the curvature of 1� F (tj�)
with respect to a. Hence, the problem is locally concave in a if F is locally convex in

a. Clearly, the CDFC ensures that the agent�s problem is globally concave. Without

the CDFC, the idea is to �concavify�1�F (tj�), or equivalently to �convexify�F (tj�).
Thus, starting from the function F (tj�), construct the convex hull (as a function

of a), and denote this FC(tj�). The convex hull is the largest convex function that
lies on or below F (tj�). Thus, FC(tja) � F (tja) for all a 2 [a; a]. For any t, let

AC(t) = fa 2 [a; a]jFC(tja) = F (tja)g

denote the set of actions for which F (tja) coincides with FC(tja). The end-points of
the domain are always in AC(t), or a; a 2 AC(t).
For any t 2 (x; x), it holds that (a; t) is incentive compatible if and only if a 2

AC(t).10 Thresholds of x or x can be used to induce only a since F (xja) = 0 and

F (xja) = 1 are independent of a. These results are summarized in the next statement.

Lemma 2 The feasible set of implementable or incentive compatible (a; t) is

I = f(a; t) 2 [a; a]� (x; x) ja 2 AC(t)g [ f(a; x); (a; x)g:

The �implementability constraint� from now on refers to the condition that the

principal must necessarily select a (a; t) pair that belongs to I.
Holding �xed the threshold t, the set AC(t) traces out all the actions in I. Moving

along the other dimension, let TC(a) denote the set of thresholds for which a can be

implemented, TC(a) = ft 2 [x; x]j(a; t) 2 Ig. Thus, TC(a) describes the set of

thresholds that can be used to incentivize the action a.

9The argument leading to Lemma 2 borrows from Kirkegaard (2017). Although he considers a
more traditional contracting setting, at the technical level his model is closely related to a problem
with binary outcomes as featured in the present model.

10For a 2 fa; ag, this statement is taken to mean that there are bonuses that make the contract
incentive compatible. The action a can be implemented with any threshold and a �xed wage contract
(no bonus). Similarly, the action a can be implemented with any interior threshold t 2 (x; x) by
picking a bonus that is so large that the agent�s utility is globally increasing in the action.
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Examples that illustrate Lemma 2 can be found in Sections 4.2, 4.3, 5.1, 5.2, and

in Appendices B and C. For now, note that AC(t) = [a; a] for all t 2 (x; x) if and only
if the CDFC is satis�ed. Thus, any departure from the CDFC implies that there are

some interior (a; t) that are not implementable.

4.2 The shape of the feasible set

Lemma 2 describes how to derive the feasible set for any distribution function. How-

ever, the shape of the feasible set depends on the speci�c properties of the latter.

This subsection asks what some reasonable or natural properties are, and what such

properties imply for the shape of the feasible set. The next subsection utilizes these

results to solve the principal�s problem.

To begin, it is helpful to introduce a very simple way to relax the CDFC.

Definition (CAT): Concavity at the top is satis�ed if, for any a 2 (a; a), there

exists some x0 2 (x; x) such that Faa(xja) < 0 for all x 2 (x0; x).

Concavity at the top (CAT) rules out the CDFC and implies that no interior

action can be implemented with very high thresholds.

Chade and Swinkels (2020) introduce a no-upward-crossing condition, which can

be stated as the requirement that Faa(�ja) � �Fa(�ja) never crosses 0 from below

on (x; x), for any � 2 R and any a. An equivalent statement is that �Fa(�j�) is
log-supermodular in a and x, or that Faa(�ja)

Fa(�ja) is increasing. Modifying Chade and

Swinkels� (2020) terminology slightly, the abbreviation NUCx will be used for no-

upward-crossing with respect to x.

Definition (NUCx): The no-upward-crossing condition (with respect to x) is sat-

is�ed if �Fa(xja) is log-supermodular in a and x.

Given NUCx, Faa(�ja) is �rst-positive-then-negative as x increases. Thus, if NUCx
is satis�ed but F is not globally convex in a for any x then CAT is automatic.

Chade and Swinkels (2020) provide su¢ cient conditions for NUCx. Even though

they provide counterexamples, they argue that NUCx is a relatively weak condition.11

They mention the location families as a special example, such that F (xja) and f(xja)
can be written as Q(x�a) and q(x�a), respectively. Here, it holds that �Fa(xja) =
q(x� a) = f(xja). Thus, in this case, the MLRP and NUCx are the same condition.

11In their leading counterexample, Faa(�ja) is �rst-negative-then-positive as x increases. Hence,
CAT is violated and the existence issue arises again.
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NUCx implies that Faa is more likely to be negative the higher the threshold is,

suggesting that the set of implementable actions shrinks as t increases. This is correct,

but the proof is more involved since the convex hull of F (tj�) must be examined.

Proposition 4 Assume NUCx holds. If t0; t 2 (x; x) and t0 > t then AC(t0) � AC(t).
That is, fewer interior actions can be implemented the higher the threshold is.

Next, move along the other dimension. Thus, �x a target action and ask which

thresholds can work to implement that particular action.

Proposition 5 Assume NUCx and CAT are satis�ed. Then, for any a 2 (a; a), the
set TC(a) is empty or it is an interval of the form (x; t

C
(a)], where tC(a) < x. Thus,

thresholds close to x cannot be used to implement a.

For a = a, let tC(a) denote the highest threshold such that the bonus derived from

the FOA is incentive compatible. Thresholds above tC(a) can still be used to induce

action a, but the bonus must be made higher than what is suggested by the FOA.

Introducing a new de�nition, say that F satis�es no-downward-crossing with re-

spect to a, abbreviated NDCa, if Faa(xj�) never crosses 0 from above on (a; a), for any
x 2 [x; x]. This allows Faa(xj�) to be �rst-negative-and-then-positive as a increases.
NDCa is a natural counterpart of NUCx, which considers the e¤ects of increasing x.

Definition (NDCa): The no-downward-crossing condition (with respect to a) is

satis�ed if Faa(xj�) never crosses 0 from above on (a; a), for any x 2 [x; x].

Equivalently, NDCa says that �Fa is unimodal in a. A su¢ cient condition is that
�Fa is log-concave in a. In the location families mentioned before, log-concavity holds
under the standard assumption that the density, q, is log-concave.

To understand NUCx, recall that �Fa is the marginal increase in the probability
of succeeding, 1� F (tja), when a increases. Thus, @ ln(�Fa)

@a
measures how the return

to extra e¤ort depends on how large e¤ort was to begin with. In turn, @
2 ln(�Fa)
@x@a

� 0
implies that the marginal return to extra e¤ort is more sensitive to what the starting

action is the larger the threshold is. Chade and Swinkels (2020) explain NUCx in the

context of a jogger trying to run a certain distance in a pre-speci�ed amount of time.

The NUCx disciplines how the marginal increase in the probability of success from

additional exercise for a committed jogger (starting at a large a) as compared to a

sedentary person (starting at a low a) changes with the threshold (distance).
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NDCa instead says that for a �xed threshold, the probability of success, 1�F (tja),
is �rst-convex-then-concave in e¤ort. For the sedentary person, a bit of additional

exercise is not going to improve the chance that he will be able to run the full distance

in the allotted time very much. However, as the amount of exercise ramps up, the

chance of succeeding increases rapidly, until a point is reached where success is all

but guaranteed and the marginal return to further exercise diminishes. Thus, the

�learning curve�is s-shaped.

NDCa implies that the set of feasible actions has a particularly simple structure.

Proposition 6 Assume NDCa holds. Then, for any t 2 (x; x), the set of imple-

mentable actions takes either the form (i) AC(t) = fa; ag, (ii) AC(t) = [a; a], or (iii)
AC(t) = fag [ [aC(t); a], where aC(t) 2 (a; a).

Thus, if some interior action is implementable, then all higher actions are imple-

mentable as well. In case (i), de�ne aC(t) = a and in case (ii) de�ne aC(t) = a.

Then, in all three cases, the set AC(t) can be written in the form fag [ [aC(t); a].
It is useful to observe that NDCa implies that if action a is implemented with

a threshold of tC(a) then the agent is exactly indi¤erent between a and the lowest

possible action, a.12 This property is analytically convenient because the �anchor�a

is independent of the action that is to be implemented, which in turn makes it easier

to make inferences about the agent�s utility along the boundary of the feasible set.

The next result combines the previous assumptions and in a way describes the

�nicest�shape of the feasible set that can be expected without the CDFC.

Corollary 1 Assume that CAT, NUCx, and NDCa all hold. Then, aC(t) is weakly
increasing in t on (x; x). Equivalently, tC(a) is weakly increasing in a on (a; a).

Intuitively, for any (a; tC(a)) pair, the temptation is as mentioned to shirk as much

as possible, i.e. deviate to a. If a is small then the probability of success is small,

other things equal. Hence, the temptation to give up is strong. To keep this apathy

in check, it is necessary that the threshold tC(a) is lower the lower a is.

Contrasting Lemma 1 and Corollary 1, note that tB(a) and tC(a) move in opposite

directions. Thus, the shape of the feasible sets are markedly di¤erent.

12Intuitively, the problem is that low thresholds would cause a deviation to a (recalling that
utility is �rst convex-then-concave under NDCa). At a threshold of t

C
(a), this incentive constraint

exactly binds. At higher threshold, the constraint is slack.
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The remainder of the section assumes that F (xja) is regular in the following sense.

Definition (Regularity): F (xja) is regular if MLRP, CAT, NUCx, NDCa all
hold and that for any a 2 (a; a), there exists a threshold tC(a) 2 (x; x) such that a
can be implemented if and only if the threshold is no larger than tC(a).13

Example 2: Assume that F (xja) is the Kumaraswamy distribution,

F (xja) = 1� (1� xa)� , x 2 [0; 1]

where � > 0 is a shape parameter and a � 0. It is easy to verify that the MLRP and
the NUCx hold. Likewise, for any x 2 (0; 1), Faa(xja) has the same sign as 1� �xa.
Thus, the CDFC is satis�ed if � 2 (0; 1]. Indeed, note that � = 1 reproduces the

distribution in Example 1 (with a normalized support), for which the CDFC holds.

For � > 1, CAT holds since 1 � �xa < 0 when x is su¢ ciently close to one. For
similar reasons, NDCa holds as well. If a > 0, then Faa(xja) is strictly positive for
all a 2 [a; a] when x is su¢ ciently small. Any such threshold can then be used to
implement any action. Combined with CAT, there thus exists a threshold tC(a) 2
(0; 1) such that a 2 (a; a) can be implemented if and only if the threshold is no larger
than tC(a). Hence, regularity is satis�ed. The last part of the argument does not

hold if a = 0. However, in this case, F (xja) is degenerate. It then turns out to
be straightforward to solve for tC(a) and verify directly that tC(a) 2 (0; 1) for all
a 2 (a; a]. By the indi¤erence condition just mentioned, U(a; tC(a)) = 0 since action
a = 0 has no chance of earning a bonus. This in turn implies that tC(a) = z

1
a , where

z 2 (0; 1) solves 1 = z (1� � ln z). In this example, the probability of success is
(1� z)�, and thus constant, along the boundary of the feasible set. N

4.3 The second-best solution

Consider again the case in which the principal takes no direct interest in the threshold

t. As before, assume that there is a unique and interior �rst-best action, aFB. The

distribution F (xja) is assumed to be regular. Since wage costs are decreasing in t
and � is independent of t, any interior solution to the second-best problem must be

on the boundary of the feasible set, i.e. be of the form (a; t
C
(a)).

13CAT already ensures that tC(a) < x. Thus, what is assumed in addition is that TC(a) is not
empty. Hence, all a are implementable with some threshold. This rules out that F (xja) is globally
concave in a for all x.
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4.3.1 The best-case scenario

The best-case scenario for the principal is that F (xja) is degenerate, or F (xja) = 1
for all x 2 [x; x]. In words, the agent�s performance is guaranteed to be the worst
possible if his action is a.14 Therefore, for any t 2 (x; x), there is no chance that the
agent earns the bonus with action a. Hence, such a deviation is less desirable and

therefore easier to prevent. In particular, the indi¤erence condition mentioned after

Proposition 6 becomes

U(a; t
C
(a)) = �a:

Thus, in this special case, the agent is indi¤erent between all (a; tC(a)), a 2 (a; a].
Stated di¤erently, the agent appropriates a constant amount of rent and the rest goes

to the principal. Thus, the �rst-best action solves the second-best problem.

Proposition 7 Assume that F (xja) is regular and that F (xja) is degenerate. Assume
that the principal�s bene�t function, �(a), depends only on a and that there is a unique

and interior �rst-best action, aFB. Then the second-best action coincides with the

�rst-best action, aSB = aFB.

The �rst-best is implemented even though the limited liability constraint prevents

the principal from �selling the �rm�and extracting all rent in the usual way. However,

the logic is similar, since implementing the �rst-best maximizes social surplus and

extracts as much rent as possible from the agent.15

Remark 1 For any interior (a; tC(a)), the agent appropriates the smallest possible
amount of rent that the limited liability constraint permits. In other words, regardless

of the principal�s information, it is impossible to extract more rent from the agent.

Thus, even if the agent�s performance, x, is perfectly observable and veri�able, the

principal can do no better than using a threshold contract. In particular, there is no

incentive for the principal to incur costs to observe x more �nely than what is required

for the threshold contract.

14In the literature, such an assumption is sometimes implicit in the model. For instance, Innes
(1990) assumes that performance is non-negative but equal to zero in expectation when the lowest
possible action is taken. Thus, performance must be zero with probability one, given action a.

15Gürtler and Kräkel (2010) consider a framework where shirking can be detected and litigated.
Depending on how rents are shared or destroyed under litigation, the �rst-best action may be
implemented under the threat of litigation. A key consideration is to prevent a deviation to a.
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4.3.2 The general case

Next, remove the assumption that F (xja) is degenerate. A deviation to a now carries
with it a strictly positive probability that the agent earns the bonus. Since the bonus

depends on (a; tC(a)), the agent�s utility therefore also depends on (a; tC(a)). Thus,

the agent�s utility is no longer constant along the boundary of the feasible set. The

principal therefore has an incentive to distort the action away from the �rst-best,

since this allows her to manipulate the rent that has to be portioned o¤ to the agent.

Propositions 1 and 2 imply a trade-o¤: An increase in a bene�ts the agent, while

the associated increase in tC(a) makes him worse o¤. The latter e¤ect can be shown

to dominate, meaning that the agent is worse o¤ the higher a is in the pair (a; tC(a)).

Thus, there are only two possibilities. First, the principal may induce an action no

lower than the �rst-best action, with the aim of lowering the agent�s rent. Second,

since implementation costs are discontinuous at a = a, it cannot be ruled out that

inducing a is preferable to the principal. Thus, either aSB = a or aSB � aFB.

Proposition 8 Assume that F (xja) is regular. Assume that the principal�s bene�t
function, �(a), depends only on a and that there is a unique and interior �rst-best

action, aFB. Then the second-best action is either a or it is no smaller than the

�rst-best action, or aSB � aFB. In the latter case, the second-best threshold is no

smaller than the threshold that optimally implements aFB subject to feasibility, or

tSB = t
C
(aSB) � tC(aFB).

Example 3: Assume that F (xja) = 1� e�
x

4
p
1+a , x � 0, a 2 [0; 6]. Here, the agent�s

performance is exponentially distributed with mean E[Xja] = 4
p
1 + a and the dis-

tribution is regular. Assuming that �(a) = E[Xja], the �rst-best action is aFB = 3.
In the second-best problem, tC(aFB) = 19:46 is the most pro�table threshold that can

induce aFB. The resulting contract yields pro�t of 4:71 whereas inducing a = 0 yields

pro�t of 4. It can be veri�ed that inducing action a = 6 yields pro�t of at most 4:58,

depending on the threshold that is used. The second-best (obtained numerically) is

at (aSB; tSB) = (3:54; 20:39), which yields expected pro�t of 4:73. N

Comparing Propositions 3 and 8 reveals that it matters whether the budget con-

straint or the �implementability constraint�is binding. The reason is that the feasible

set are shaped so di¤erently, since tB(a) and tC(a) move in opposite directions. On

the other hand, Propositions 3 and 8 agree on the conclusion that the second-best
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threshold is typically larger than the threshold that would optimally implement the

�rst-best action subject to feasibility. This distortion is due to the fact that higher

thresholds are cheaper to implement. To be able to use higher thresholds, however,

the action must be distorted downwards under budget constraints but upwards when

it is the implementability constraint that binds.

Examples 2�6 provide examples of regular distribution functions. Appendix C

contains an example that shows that some natural distribution functions are not

regular. However, the problem can also be solved in such cases.

5 Intrinsically important criteria for success

This section considers bene�t functions �(a; t) that depend both on the action and

the criterion for success. The analysis is broken into two parts, each examining a

di¤erent class of environments.

5.1 Bene�ts versus implementation costs

This subsection assumes that the �rst-best solution (aFB; tFB) is unique and interior.

It is also assumed that (aFB; tFB) can feasibly be implemented in the second-best

problem. First, this requires that the budget is large enough, or b � B(aFB; tFB).

Second, (aFB; tFB)must be incentive compatible, or (aFB; tFB) 2 I. This is automatic
if the CDFC is satis�ed. More generally, however, the complication is that while

Section 4 describes the shape of I for any F (xja), the �rst-best solution depends not
only on F (xja) but also on �(a; t). The next result con�rms that (aFB; tFB) 2 I for
two speci�cations of �(a; t) that are closely related to the salesman problem.

Proposition 9 Let v (x) be a strictly increasing and di¤erentiable function de�ned
on [x; x]. Assume also that there exists some c 2 (x; x) such that v(c) = 0. Assume
that either

1. �(a; t) = v(t)(1� F (tja)), or

2. �(a; t) =
R x
t
v (x) f(xja)dx and that F is regular.

In either case, any �rst-best solution (aFB; tFB) is in I.
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The �rst case �ts the salesman example when v(t) = t � c, and where c repre-
sents the cost of production. The second case is relevant to up-or-out employment

contracts where the action (a) is the agent�s e¤ort during the trial period to build up

job-speci�c human capital (x). Human capital accumulation is stochastic and deter-

mines the agent�s productivity (v(x)) if he remains in the organization after the trial

period. In this case, c can be interpreted as the minimum level of competency that

is required for the agent�s continued employment to be productive to the principal.

This interpretation also partially �ts the pass/fail and licensing examples in the in-

troduction. However, in such cases the principal often controls the bonus at best in

an indirect way. Section 6.1 discusses the possibility of exogenous bonuses.

The �rst case in Proposition 9 does not rule out the CDFC. Thus, in the absence

of a budget constraint, the existence problem may seemingly raise its head. However,

since �(a; t) ! 0 as t ! x, large thresholds are unlikely to be optimal. Hence,

the properties of �(a; t) may on their own be enough to ensure the existence of a

solution to the second-best problem. Thus, in the next result, it is assumed only

that a solution to the second-best problem exists, but it is left unspeci�ed whether

this is due to a budget constraint, the implementation constraint, or the properties

of �(a; t). Indeed, the result is driven only by the interaction between a and t as

bene�ts and implementation costs are traded o¤.

Any departure from (aFB; tFB) strictly lowers social surplus. Likewise, under the

MLRP, any incentive compatible contract that weakly increases a and/or weakly

decreases t makes the agent at least weakly better o¤, by Propositions 1 and 2. Thus,

such a contract leaves strictly less surplus to the principal than she would get from

inducing the �rst-best. In other words, the second-best cannot have both a larger a

and a smaller t than the �rst-best.

Corollary 2 Assume the MLRP holds. Assume that the �rst-best solution (aFB; tFB)
is unique, interior, and feasible in the second-best problem. Assume that a second-

best solution (aSB; tSB) exists and that it is di¤erent from the �rst-best.16 Then, the

second-best features either a strictly higher threshold than the �rst-best (tSB > tFB),

a strictly lower action (aSB < aFB), or both.

It is important to realize that both the action and the criterion for success are

distorted. Hence, the moral hazard problem implies a welfare loss along both dimen-
16The �rst-best and second-best may coincide in special cases, such as when �(a; x) is discontin-

uous at (aFB ; xFB).
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sions. The next example is a version of the salesman example and shows that both

the action and the threshold may be distorted downwards.

Example 4: Assume that �(a; t) = t(1 � F (tja)) and that F (xja) = 1 � e�
x

a� ,

x 2 [0;1), a 2 [0; 1], and � 2 (0; 1). Thus, the agent�s performance is exponentially
distributed with mean h(a) = a�. Note that F is regular and degenerate at a = a = 0.

These functional-form assumptions make it possible to solve the �rst-best and second-

best problems analytically. The details are in Appendix B, which in fact outlines a

solution procedure for any concave h(a) function for which h(0) = 0 and F is regular.

In the �rst-best problem,

aFB =
�
�e�1

� 1
1�� and tFB =

�
aFB

��
=
�
�e�1

� �
1�� :

Thus, tFB equals the mean performance, in equilibrium. Likewise, 1�F (tFBjaFB) =
e�1 regardless of �. Thus, the probability that the agent succeeds is always the same.

In the second-best problem, the boundary of the feasible set is described by

t
C
(a) = 1

�
a�, thus con�rming that the �rst-best solution is feasible in the second-

best problem. The second-best solution depends qualitatively on the size of �. If � is

below
p
5�1
2
= 0:618 then the solution is in the interior of the feasible set. For higher

� values, the solution is on the boundary of the feasible set. In particular,

aSB =

( �
(1 + �)2 �2e�(1+�)

� 1
1�� if � 2 (0;

p
5�1
2
]

e�
1

�(1��) if � 2 (
p
5�1
2
; 1)

and

tSB =

(
(1 + �)

�
aSB

��
if � 2 (0;

p
5�1
2
]

1
�

�
aSB

��
if � 2 (

p
5�1
2
; 1)

:

Note that 1 + � � 1
�
if and only if � �

p
5�1
2
.

It can be veri�ed that aSB < aFB for all � 2 (0; 1). On the other hand, tSB < tFB

if � < 0:492 and tSB > tFB if � > 0:492. Thus, the threshold is distorted below the

�rst-best if � is small. It is also when � is small that the second-best solution is in

the interior of the feasible set and therefore that tSB < tC(aSB). The reason is that

the agent is more productive the smaller � is. Then, it is relatively more important

for the principal to manipulate �(a; t) than W (a; t).
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The probability that the agent succeeds is 1 � F (tSBjaSB) = minfe�(1+�); e�
1
� g.

This is u-shaped in � and minimized at � =
p
5�1
2
. Since 1 � F (tSBjaSB) < e�1, the

agent succeeds less often in the second-best than in the �rst-best despite the fact that

the threshold may be lower in the second-best. N

Example 4 demonstrates the possibility that tSB < tFB. Nevertheless, it is a

fairly general conclusion that the second-best threshold is higher than the socially

optimal threshold that implements aSB (rather than aFB). Thus, the threshold is too

stringent for the action that is actually taken in equilibrium.

To be more precise, assume that for any action a, there is a unique and in-

terior threshold that maximizes social surplus. Let bt(a) = argmaxt (�(a; t)� a)
denote the threshold in question. Assume that (a;bt(a)) is feasible in the second-
best problem for any a. Then, tSB � bt(aSB) as shown next. An implication is

that the price in the salesman example is set above the monopoly price for the de-

mand curve described by 1 � F (�jaSB). For instance, in Example 4 it holds thatbt(a) = a� � 1
�
a� = t

C
(a), implying that (a;bt(a)) is feasible. Indeed, note thatbt(aSB) = �aSB�� < minf(1 + �) �aSB�� ; 1

�

�
aSB

��g = tSB as claimed.
Corollary 3 Assume that the MLRP holds. Assume that bt(a) = argmaxt (�(a; t)� a)
is unique and interior for all a and that (a;bt(a)) is feasible in the second-best problem
for any a. Then, tSB � bt(aSB).
Example 5: The central argument in the proof of Corollary 3 relies only on the

feasibility of (aSB;bt(aSB)) in the second-best problem, but stating the condition that
way is somewhat more obscure since aSB is endogenous. The second speci�cation in

Proposition 9 illustrates the issue. Here bt(a) = c for all a. While (aFB;bt(aFB)) =
(aFB; tFB) was shown to be feasible, it is not a given that (a;bt(a)) is feasible for all
a since tC(a) < c is possible when a is small. Appendix B considers in detail an

example in which F (xja) = 1 � e�
x

a� , x 2 [0;1), a 2 [0; 1], and � 2 (0; 1) as in
Example 4, and where �(a; t) is as in the second speci�cation in Proposition 9, but

with v(x) = x� c. It is shown that the second-best action is never in the range where
t
C
(a) < c. Hence, tSB � c = bt(aSB). N

5.2 Intrinsically important success probabilities

The distortions identi�ed so far are driven by the principal�s attempt to extract rent

from the agent. However, there are situations in which the principal �nds it optimal
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to concede rent to the agent compared to what is earned if the �rst-best action

is implemented. To illustrate, assume in the following that the principal�s bene�t

function takes the form

�(a; t) = �(a) + �(F (tja)); (1)

where � and � are continuous and bounded functions. Here, �(a) is some direct

bene�t deriving from the agent�s action, such as �(a) = E[Xja]. In contrast, �(F (tja))
describes an additional bene�t that depends only on the probability that the agent

fails or succeeds. If � is constant, then the principal is not intrinsically interested in

the criteria for success and the model reduces to the one studied in Sections 3 and 4.

The formulation in (1) is inspired by Li and Yang�s (2020) monitoring problem. In

their setting, monitoring is costly and modelled by partitioning [x; x] into a number of

performance categories. They assume that the principal wishes to induce the highest

possible action. Li and Yang (2020) devote particular attention to the special case

in which monitoring costs depend only on the number of categories. If the cost of

additional categories is high enough, then two categories (success and failure) are

optimal.17 The results in Sections 3 and 4 then apply directly. Unlike Li and Yang

(2020) these results allow a comparison of �rst-best and second-best actions.

However, Li and Yang (2020) also allow for monitoring cost functions that depend

on the probability of success. This produces a bene�t function as in (1). In fact, they

assume that the naming of the categories do not matter for monitoring costs, which

means that the cost is symmetric in the probability of success/failure. Moreover,

�(F (tja)) is maximized when F (tja) = 0 and when F (tja) = 1, because in either case
there is e¤ectively only one performance category. Thus, there is a �rst-best solution

with tFB = x and another with tFB = x (assuming the support of X is bounded).

This is in contrast to the previous subsection, where tFB is assumed to be unique and

interior. In Li and Yang (2020), it is reasonable to assume that � is u-shaped and

minimized at F (tja) = 1
2
, i.e. when the two categories are equally �large.�

There are other applications of bene�t functions of the form in (1). For instance,

imagine that it is costly to process the payment of the bonus. Then, � is increasing in

its argument, because the larger the probability is that the agent fails, the less likely

the principal is to have to incur the cost. Conversely, � is decreasing if a failure means

that the principal will have to incur �xed costs of restarting a research endeavour or

17Note that in Section 4.3.1 there is zero return to having more than two categories (Remark 1).
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incur search costs to replace the agent. Finally, consider some professional body that

controls the admission of candidates or apprentices into a �club�(e.g. a guild or other

professional organization). This body may have in mind an ideal size, or pass-rate.

In this case, tFB is interior and � is hump-shaped.

The �rst-best problem is to maximize

S(a; t) = �(a)� a+ �(F (tja)):

Hence, whatever action is chosen, t must be calibrated to ensure that F (tja) achieves
a value that maximizes �(F (tja)), if such a t value exists. Since supt �(F (tja)) is
independent of a, de�ne the �rst-best action as aFB 2 argmaxa (�(a)� a).
The second-best problem is to maximize

S(a; t)� U(a; t) = [�(a)� a� U(a; t)] + �(F (tja)):

Thus, there are two forces at play. The bracketed terms take the same form as the

principal�s problem in Sections 3 and 4. This describes the trade-o¤ between the

action and implementation costs. The last term captures the added consideration

that comes from the principal�s direct interest in the interaction between a and t.

To continue, assume that �(F (tja))�U(a; t) is strictly increasing in t in the interior
of I. Since U(a; t) is strictly decreasing in t in the interior of I, this assumption holds
if � is either increasing or if it is not too sensitive to changes in the probability of

failure. Then, if aSB is interior, the accompanying threshold must be the highest

feasible threshold. Now, the results in Sections 3 and 4 reveal which direction along

the boundary of the feasible set to move in for �(a)� a� U(a; t) to increase. Recall
that what motivates the principal to travel along the boundary is that doing so can

lower the agent�s rent, at the cost of distorting the action away from aFB. However,

moving in said direction may or may not increase �(F (tja)). If the two e¤ects agree
or if the �rst e¤ect dominates, then the conclusions from Sections 3 and 4 obviously

stand. Otherwise, it is optimal to move in the opposite direction to what is suggested

in Sections 3 and 4. In such cases, the distortion away from aFB increases the agent�s

rent and is therefore mutually bene�cial to both parties.

Corollary 4 Assume that �(F (tja))�U(a; t) is strictly increasing in t in the interior
of I. Assume that aFB is unique and interior. Then, if aSB is interior, it compares
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to aFB as follows:

1. If the MLRP and CDFC hold and the principal faces a budget constraint, then

either (i) aSB � aFB or (ii) or (aSB; tB(aSB)) is a Pareto improvement over

(aFB; t
B
(aFB)).

2. If F (xja) is regular then either (i) aSB � aFB or (ii) or (aSB; tC(aSB)) is

a Pareto improvement over (aFB; tC(aFB)). If F (xja) is degenerate then any
interior second-best action maximizes S(a; tC(a)).18

In comparison, if t is not intrinsically important to the principal then the agent is

always worse o¤ in the second-best when aSB 6= aFB compared to the counterfactual
situation where the principal induces aFB in the most pro�table manner. After all,

the only reason for the principal to distort the action in such cases it to extract more

rent from the agent.

Finally, note that when � is increasing and tFB = x, it is necessarily the case that

tSB < tFB when aSB is interior. Hence, it is possible that aSB > aFB and tSB < tFB

at the same time. This is contrary to the conclusion that is obtained in Corollary 2,

where it is assumed that the �rst-best is feasible in the second-best problem.19

The next example considers an environment consistent with Li and Yang (2020).

Example 6: Assume that F (xja) is a version of the Lomax distribution, with

F (xja) = 1�
�
1 +

x

a

��2
; x 2 [0;1)

and let a = 1. This distribution is regular and tC(a) = 1
2

�
a+

p
a (a+ 8)

�
. It can

be veri�ed that F (tC(a)ja) is decreasing in a and that it is always greater than 3
4
.

Consistent with Li and Yang�s (2020) problem, assume that �(a) = 4
p
a and that

�(F (tja)) = "
�
F (tja)� 1

2

�2
, " � 0. The �rst-best action is aFB = 4. Turning to

the second-best problem, �(F (tja))� U(a; t) is strictly increasing in t in the interior
of I whenever " � 27. However, �(F (tC(a)ja)) is decreasing in a, to the principal�s

18Note that F (xja) is degenerate and F (tC(a)ja) is constant in (i) Example 2 when � > 1 and
a = 0 and in (ii) Example 4 when h(a) = a� , � 2 (0; 1) and a = 0. Thus, �(F (tja)) does not change
along the boundary of I. In such cases, aSB and aFB coincide and the welfare cost of moral hazard
comes only from the fact that tSB is distorted away from tFB .

19Corollaries 2 and 4 are not in general mutually exclusive. For instance, both may apply if � is
hump-shaped.
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detriment. Thus, the principal has an incentive to lower a, but this competes with the

opposing incentive to increase a in order to lower implementation costs. The latter

e¤ect dominates if and only if " <
p
6075+108
23

= 8:084. Thus, if " is below this cut-o¤,

then the second-best action exceeds the �rst-best action, or aSB > aFB. However,

if " is below the cut-o¤ then aSB < aFB and the agent is made better o¤. Thus, in

this example, the higher " 2 [0; 27] is �i.e. the more the principal intrinsically cares
about the threshold �the less the agent works and the better o¤ he is. N

Corollary 4 applies more broadly to bene�t functions for which aFB exists and

�(a; t)� U(a; t) is strictly increasing in t in the interior of I. The functional form in

(1) is used for concreteness and for the fact that aFB as de�ned always exists.

6 Discussion

6.1 Exogenous thresholds or bonuses

Proposition 4 has some relevance to the literature that uses the �rst-order approach

with a continuum of actions but two outcomes on the one hand, and the literature

that assumes binary actions and two outcomes on the other hand.

Corollary 5 Assume NUCx holds. If t0; t 2 (x; x) and t0 > t then AC(t) = [a; a] if
AC(t0) = [a; a]. In this case, the �rst-order approach is valid for any �xed threshold

that is below t0. That is, the �rst-order condition is su¢ cient for incentive compatibil-

ity. Likewise, AC(t0) = fa; ag if AC(t) = fa; ag. In this case, for any �xed threshold
that is above t, only a and a can be implemented and the model reduces to a binary

action model with two outcomes.

Thus, consider an environment with an exogenous threshold. If the threshold is

small and it is easy to succeed, then the �rst-order approach is valid and a continuum

of actions can be implemented. In contrast, if it is hard to succeed then only the two

extreme actions can be implemented. Hence, there is a link between how stringent

the criterion for success is and whether it is appropriate to model the agent as having

e¤ectively a continuum of actions or binary actions.

Imagine now instead that the bonus is �xed, but that the principal has �exibility

to adjust the criterion for success. If the bonus is �xed at b, the restriction that

B(a; t) = b must now be respected and the set of feasible (a; t) shrinks as a result.
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In comparison, Section 3 assumed that B(a; t) � b but showed that B(a; t) = b is

optimal when the CDFC is satis�ed and the principal does not intrinsically care about

t. Thus, Proposition 3 is robust and it is still the case that the second-best action is

distorted downwards when the bonus is exogenously �xed.

For any given a, there are two thresholds that exactly satisfy B(a; t) = b (see

the proof of Lemma 1) Proposition 3 is concerned only with the higher of these

thresholds, tB(a). The conclusion in Proposition 3 relies on the fact that U(a; tB(a))

is increasing in a, so a downwards distortion in a is required to extract more rent from

the agent. However, for the smaller threshold, tB(a), it can be veri�ed that U(a; tB(a))

is decreasing in a. Now note that if F (xja) is regular and aFB is small, then tB(aFB)
may fall outside TC(aFB), in which case the principal is forced to use thresholds tB(a)

to induce actions close to aFB. In this case, there is again an incentive to distort the

action upwards. Hence, whether the conclusion in Proposition 8 survives depends on

the size of aFB compared to b.

6.2 Observable performance and endogenous criteria

Demougin and Fluet (1998) consider a model with a �nite number of signals, lim-

ited liability, and risk neutral parties. Assuming that the FOA is valid and that

performance is perfectly observable, they show that there is no loss of generality in

restricting the compensation structure to be binary. A bonus is paid if and only if

the �most favorable�signal �the one with the highest likelihood-ratio �is realized.

This event has a strictly positive probability of occurring in their �nite-signal model.

Thus, there is no existence problem.

Under the MLRP, the most favorable signal is the highest signal. Then, it is

optimal to award a bonus if and only if the very highest signal is observed, regardless

of which action is to be induced.20 This situation is therefore similar to the case of

an exogenous threshold in the present model. The same logic as in Section 2.2 then

proves that the second-best action is distorted downwards.

Demougin and Fluet (1998) note that without the MLRP, the most favorable

signal is generally not the highest signal. Then, the optimal contract is not monotonic

20Demougin and Fluet (2001) build on Demougin and Fluet (1998), while assuming that the
MLRP and the CDFC hold. The principal can invest in di¤erent monitoring technologies, each
leading to a di¤erent relationship between actions and the probability of realizing the highest signal.
Then, the optimal monitoring system may depend on the action that is implemented.
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in the signal. They also make the point that without the MLRP the most favorable

signal may depend on the action that is to be induced. This observation is similar

to how the criteria of success are sensitive to the action in Sections 3 and 4 of the

current paper. However, Demougin and Fluet (1998) do not impose enough structure

to say exactly how the most favorable signal depends on the action when the MLRP

is violated, or how the second-best action compares to the �rst-best action.

In a related paper, Oyer (2000) assumes a continuum of observable signals, limited

liability, risk neutrality, a slack participation constraint, and the additional constraint

that compensation must be non-decreasing in the signal. Assuming the FOA is valid,

the uniquely optimal contract (if one exists) consists of a threshold below which the

limited liability constraint binds and above which a �xed bonus is paid. The contract

therefore has the same structure as in the current paper. Acknowledging the existence

problem, Oyer (2000) thus considers environments where the MLRP does not hold, in

which case the criterion for success depends on the action that is to be implemented.

In his examples, the second-best action is always below the �rst-best action.

Demougin and Fluet�s (1998) and Oyer (2000) assume that the FOA is valid but

the MLRP does not necessarily hold. In the current paper, the MLRP is maintained

throughout, but the FOA is not assumed to be valid in Section 4. As discussed

in Remark 1, threshold contracts are optimal when F (xja) is regular and F (xja) is
degenerate, even when performance is fully observable. In such cases, aFB = aSB.

6.3 Granular failures

The analysis in Section 5 is under some conditions also still valid if the principal has

granular information about failures, meaning that she can observe the agent�s exact

performance when he fails to meet the threshold. An application is the inventory

problem studied by Chu and Lai (2013) and Dai and Jerath (2013). The principal is

a retailer who decides upon the quantity of product to stock. Since a higher stock

is costlier, the principal is intrinsically interested in its level and she would ideally

like to not stock too much. She can observe how much of the stock the salesman or

agent manages to sell. Thus, she has exact information if the agent fails to exhaust

the stock. However, if the agent depletes the stock, the principal obviously cannot

tell how much he would have been able to sell had the stock been higher. Thus,

the principal has an incentive to increase the stock above the �rst-best level in order
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to gather more information and lower implementation costs. Dai and Jerath (2013)

assume that there are just two e¤ort levels. Chu and Lai (2013) assume that there is

a continuum of actions and that the FOA is valid. They provide an example in which

the second-best action is above the �rst-best action.

If the agent�s �rst-order condition is su¢ cient for incentive compatibility, then

the MLRP implies that the optimal contract is a do-or-die contract: A bonus is paid

only if the entire stock is sold, whereas the minimum wage is paid if the agent fails

(see Appendix D for details). In other words, the granular data about failures is

not used. If the cost of stocking the product is su¢ ciently high, the optimal stock

in both the �rst-best and second-best problem must be relatively small and, when

the distribution is regular, the �rst-order condition is then su¢ cient for incentive

compatibility. Hence, in this case the analysis is valid in the inventory problem as

well.21 If F (xja) is degenerate, then it is not even necessary for the cost of stocking the
product to be high. After all, if the principal wishes to maintain a stock t > tC(aSB),

there is no cheaper way to incentivize the agent than to pay him a bonus if and

only if sales exceeds tC(aSB). In other words, the quota that triggers a bonus is

below the stock level. This can also occur in Chu and Lai (2013), but only when the

participation constraint is binding and prevents the quota from being raised.

These observations are also pertinent to the salesman example. Return to Example

4, where F (xja) is degenerate and tSB > bt(aSB). Imagine that the principal is now
able to infer the willingness-to-pay of the customer if the agent failed to make the sale,

for instance because she undertakes a (presumably costly) survey or interview. If the

action aSB and price tSB are such that tSB < tC(aSB), then, by the argument in the

previous paragraph, the granular information is of no use in lowering implementation

costs. However, the granular information may potentially be useful in writing a

contract that is incentive compatibility even at prices tSB � tC(aSB). Nevertheless,
using the logic in Remark 1, the implementation cost of any incentive compatible

contract is at least aSB, but this is exactly the cost that is incurred from using the

price tC(aSB) and ignoring the granular information failures. Thus, there can be

no cost-saving and since t has moved even further away from bt(aSB), the principal�s
pro�t � also decreases. In sum, the principal has no use for granular information

about failures and should not incur costs to collect it.

21The FOA can be used to bound implementation costs. If the solution that is obtained in this
manner is in I, then it is the correct second-best solution.
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7 Conclusion

This paper endogenizes the criteria for success that form the basis of the agent�s

compensation. These criteria are disciplined by the agent�s underlying performance

technology and possibly a budget constraint. Depending on whether the budget

constraint or implementability constraints are more restrictive, the second-best action

may be distorted upwards or downwards compared to the �rst-best, but it is typically

the case that the criteria for success are in some sense too stringent. For instance, in

situations such as the salesman example, the terms that are o¤ered to the customer

are distorted in order to make it cheaper to incentivize the agent, who acts as a

middleman. Charging a price that is above the monopoly price makes it more di¢ cult

for the agent to sell the product and gives him stronger incentives to try harder. Thus,

the distortion that comes from the moral hazard problem spills over into the market.

The FOA is not needed and many of the central results come from tackling the

implementability problem in more generality. A key observation is that the second-

best solution is often on the boundary of the feasible set, the shape of which depends

on the performance technology. Thus, the solution is sensitive to the properties of

the performance technology in a way that is absent when the FOA approach is valid.

A class of distributions with certain regularity properties are identi�ed in which

the second-best action is distorted upwards when the principal does not intrinsically

care about the threshold. Central to this result is the fact that a �non-local�incentive

constraint is binding in the second-best solution. Speci�cally, the agent is indi¤erent

between taking the intended action and the very lowest action. A low action cannot be

incentivized with a high threshold, since the bonus is then unlikely to be realized and

the agent might as well shirk completely. Thus, to be able to maintain high standards

�which tends to be cheaper for the principal �the agent must be incentivized to work

harder, thereby explaining the upwards distortion in the action. This logic relies on

the FOA being invalid and therefore demonstrates the need for further research into

contracting without the FOA.
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Appendix A: Omitted proofs

Proof of Proposition 1. Fix a threshold t. The statement is trivial if t 2 fx; xg
since only a can be implemented in that case. Thus, assume that t 2 (x; x) and

assume that there are at least two implementable actions. Using a standard argument,

compare two implementable actions, a and a0, with a0 > a. Incentive compatibility

requires that

B(a0; t) (1� F (tja0))� a0 � B(a0; t) (1� F (tja))� a

if a0 is induced and

B(a; t) (1� F (tja))� a � B(a; t) (1� F (tja0))� a0

if a is induced. Combining the two yields

B(a0; t) (F (tja)� F (tja0)) � a0 � a � B(a; t) (F (tja)� F (tja0)) :

Since F (tja)� F (tja0) > 0, it follows that B(a0; t) � B(a; t). Then, 1� F (tja0) > 1�
F (tja) implies thatW (a0; t) > W (a; t). Finally, it follows from incentive compatibility
and B(a0; t) � B(a; t) that

U(a0; t) = B(a0; t) (1� F (tja0))� a0

� B(a0; t) (1� F (tja))� a
� B(a; t) (1� F (tja))� a
= U(a; t):

This completes the proof.

Proof of Proposition 2. Since log-supermodularity survives integration, the

MLRP implies that the distribution function F (xja) as well as the survival function
1� F (xja) are also strictly log-supermodular; see e.g. Athey (2002, Lemma 3). This
observation is relevant because W (a; t) can be written

W (a; t) =

�
@ ln (1� F (tja))

@a

��1
:
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It follows immediately from simple di¤erentiation that W (a; t) is strictly decreasing

in t. Thus, U(a; t) =W (a; t)� a is strictly decreasing in t as well.

Proof of Lemma 1. The CDFC ensures that any (a; t) pair is incentive compatible

(given the bonus is B(a; t)). At a, the bonus B(a; t) is the lowest possible bonus that is

incentive compatible. Higher bonuses are also incentive compatible, but unnecessarily

costly. Thus, Propositions 1 and 2 also hold when a = a. Since the �rst-order

approach is valid under the CDFC, the feasible set of implementable (a; t) pairs is

restricted only by the budget constraint that B(a; t) � b.
By Proposition 1, B(a; t) is weakly increasing in a. Hence, if (a; t) satis�es the

budget constraint then any (a0; t) with a0 < a also satis�es the constraint. This proves

that the set of actions that can be implemented is an interval of the form [a; aB].

The rest of the lemma is trivial if aB = a, so assume in the remainder that the

budget is high enough that aB > a. As mentioned in the text, since Fa(tja) ! 0 as

t ! x, thresholds that are close to x violate the budget constraint.22 Thus, for any

a 2 (a; aB], there exists some tB(a) 2 (x; x) for which B(a; tB(a)) = b and B(a; t) > b
for all t > tB(a). Then, Proposition 1 also implies that tB(a) is weakly decreasing in

a. The reason is that if a0 < a and t > tB(a0) then b < B(a0; t) � B(a; t), meaning

that thresholds above tB(a0) cannot be used to implement a.23

Proof of Proposition 3. The proposition is trivial if aFB > aB. Thus, assume that

aFB � aB. To implement a 2 (a; aB], the cheapest threshold is tB(a) and the agent
consequently earns utility U(a; tB(a)). However, since tB(a) is weakly decreasing in a

by Lemma 1, it follows from Propositions 1 and 2 that U(a; tB(a)) is weakly increasing

in a. Then, starting from aFB and the associated threshold tB(aFB), an increase in

a and associated decrease in t strictly decreases social surplus and at the same time

weakly increases the agent�s utility. Hence, the principal is unambiguously worse o¤.

Thus, aSB > aFB cannot be optimal, and it follows that aSB � aFB.24 Then, if

22Incidentally, the same argument also implies that the budget constraint is violated by thresholds
that are close to x. The MLRP implies that the bonus B(a; t) is u-shaped in t since Bt(a; t) =

fa(tja)
Fa(tja)2

is �rst strictly negative and then strictly positive as t increases. Thus, for a given action a, the
bonus B(a; t) is minimized at the threshold t = t0(a) for which the likelihood-ratio is zero, or
fa(t0(a)ja) = 0. Note that aB satis�es B(aB ; t0(aB)) = b if aB < a.

23In the special case where F (tja) is linear in a, tB(a) is a constant because B(a; t) is independent
of a.

24If �(a) is di¤erentiable and tB(a) is stricly decreasing in a, then aSB < aFB . Intuitively, a small
distortion away from (aFB ; t

B
(aFB) has no �rst-order e¤ect on social surplus but it has a �rst-order
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aSB > a it must hold that tSB = tB(aSB) � tB(aFB) since tB(a) is weakly decreasing
in a.

Proof of Lemma 2. Fix some t 2 (x; x). Then, (a; t) is incentive compatible if
and only if it is true that there is no pro�table deviation, or

B(a; t) (1� F (tja))� a � B(a; t) (1� F (tja0))� a0

for all a0 2 [a; a]. For any a 2 (a; a), the �rst-order condition dictates that the

bonus is B(a; t) = �1
Fa(tja) . Then, keeping in mind that Fa(tja) < 0 when t 2 (x; x), a

rearrangement of the �rst condition yields

F (tja) + (a0 � a)Fa(tja) � F (tja0)

for all a0 2 [a; a]. Thus, the tangent line to F (tj�) through a must lie always below
the function itself. This is the case if and only if a 2 AC(t).
An alternative way to understand the intuition is as follows. First, since 1 �

FC(tj�) � 1 � F (tj�), the agent�s expected utility is at least as high in an imaginary
problem where his technology is described by FC(tj�) rather than F (tj�). Moreover,
expected utility is concave in the imaginary problem. Thus, if utility in the imaginary

problem is maximized at some a 2 AC(t) then it is maximized at the same action in
the real problem.

For a 2 fa; ag, note �rst that a zero bonus induces a regardless of the threshold.
Likewise, for any t 2 (x; x), a su¢ ciently high bonus makes the agent�s expected

utility globally increasing in a and therefore incentivizes action a.

Proof of Proposition 4. Recall that a and a are always in AC(t). Hence, the

result is trivial if AC(t0) = fa; ag. Thus, assume that there is some action a� 2 (a; a)
that belongs to AC(t0). Since a� 2 AC(t0),

F (t0ja�) + (a� a�)Fa(t0ja�) � F (t0ja)

or

F (t0ja�)� F (t0ja) + (a� a�)Fa(t0ja�) � 0 (2)

e¤ect on the agent�s expected utility.

36



for all a 2 [a; a]. By contradiction, assume that a� =2 AC(t). Then, there exists some
a 6= a� for which

F (tja�)� F (tja) + (a� a�)Fa(tja�) > 0: (3)

For any a that satis�es (2) and (3), combining the two inequalities leads to the

conclusion that

�Fa(t0ja�) (F (tja�)� F (tja)) > �Fa(tja�) (F (t0ja�)� F (t0ja)) ;

or Z a�

a

(Fa(tja�)Fa(t0jz)� Fa(t0ja�)Fa(tjz)) dz > 0: (4)

The integrand is weakly negative if and only if

ln(�Fa(tja�)) + ln(�F (t0jz)) � ln (�Fa(t0ja�)) + ln (�Fa(tjz)) : (5)

Now recall that t0 > t and assume to begin that a < a�, implying that z � a�. Then,
since (a�; t0) is the componentwise maximum and (z; t) the componentwise minimum,

the supermodularity of ln(�Fa) implies that the inequality in (5) is satis�ed. However,
this contradicts (4). If a > a�, then the inequality in (5) is reversed, but this again

yields the contradiction to (4) that

�
Z a

a�
(Fa(tja�)Fa(t0jz)� Fa(t0ja�)Fa(tjz)) dz < 0:

Hence, there can be no a for which (3) holds, given that (2) holds for all actions.

Thus a� 2 AC(t0) implies that a� 2 AC(t), or AC(t0) � AC(t).

Proof of Proposition 5. Fix an interior action a. Due to CAT, Faa(�ja) must
be negative when t is large enough. Such threshold are not incentive compatible and

cannot implement a. In combination, NUCx and CAT imply that Faa(�ja) is either
always negative or it is �rst-positive-then-negative in x.

Recall from Proposition 4 that if t0; t 2 (x; x) and t0 > t then AC(t0) � AC(t).

Thus, if a =2 AC(t) then a =2 AC(t0). In words, if some threshold t cannot implement
a then no higher threshold works either.

Combining the two observations implies that if TC(a) is not empty then it must

take the form (x; t
C
(a)], where tC(a) < x.
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Proof of Proposition 6. If Faa(tj�) < 0 for all a then AC(t) = fa; ag. If Faa(tj�) � 0
for all a then AC(t) = [a; a]. NDCa permits only one additional possibility, namely

that Faa(tj�) is �rst-negative-then-positive as a increases. In this case, AC(t) either
consists only of fa; ag or of a and an interval that extends to a. In the latter case
AC(t) = fag [ [aC(t); a], where aC(t) 2 (a; a). More formally, if a 2 (a; a) belongs to
AC(t) then it holds that Faa(tja) � 0 and that

F (tja) + (a0 � a)Fa(tja) � F (tja0)

for all a0 2 [a; a]. The left hand side is decreasing in a when Faa � 0. Hence, given
NDCa, if a 2 (a; a) is in AC(t) then all higher actions are also in AC(t).

Proof of Corollary 1. This follows from combining the conclusion that AC(t)

shrinks when t increases with the conclusion that AC(t) = fag [ [aC(t); a].

Proof of Proposition 7. Recall that U(a; tC(a)) = �a, or

W (a; t
C
(a)) = a� a

for a 2 (a; a]. Thus, if action a 2 (a; a] is implemented with threshold tC(a), then
the cost of implementation is a � a. Similarly, a can be implemented with a zero
bonus. At the other end of the support, for action a there is no bene�t to making

the threshold exceed tC(a) since the indi¤erence condition must also hold at such

thresholds (the binding incentive compatibility constraint is the no-jump constraint

to a). Thus, implementation costs are continuous in a.

In summary, the principal�s payo¤ is

�(a)� a+ a;

which by de�nition is no greater than �(aFB)� aFB + a. In this form, the problem is
easy to solve. Simply induce action aFB by picking the threshold t = tC(aFB). Thus,

the �rst-best action is implemented, and it is implemented with the highest feasible

threshold.

Proof of Proposition 8. The proof begins by showing that U(a; tC(a)) is decreasing
in a. Any point on the boundary of the feasible set, (a; tC(a)), is characterized by the
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condition that

F (tja)� F (tja) + (a� a)Fa(tja) = 0:

From Corollary 1, tC(a) is weakly increasing in a on (a; a). In fact, the slope equals

dt
C
(a)

da
= � (a� a)Faa(tja)

f(tja)� f(tja) + (a� a) fa(tja)
;

where Faa(tja) � 0 is necessary for (a; tC(a)) to be incentive compatible and where

the denominator is non-negative because

f(tja)� f(tja) + (a� a) fa(tja) = f(tja)� f(tja)� F (tja)� F (tja)
Fa(tja)

fa(tja)

=

Z a

a

Fa(tjz)
�
fa(tjz)
Fa(tjz)

� fa(tja)
Fa(tja)

�
dz

is non-negative since Fa(tjz) < 0 and NUCx implies that fa(tjz)
Fa(tjz) is weakly increasing

in z.

Since

Ua(a; t) =
Faa(tja)(1� F (tja))

Fa(tja)2

Ut(a; t) =
f(tja)Fa(tja) + fa(tja) (1� F (tja))

Fa(tja)2

and utilizing (a� a)Fa(tC(a)ja) = F (tC(a)ja)� F (tC(a)ja), it can now be seen that

dU(a; t
C
(a))

da
= Ua(a; t

C
(a)) + Ut(a; t

C
(a))

dt
C
(a)

da

=
(1� F (tja))(1� F (tja))

Fa(tja)2
Faa(tja)

f(tja)� f(tja) + (a� a) fa(tja)

�
�

f(tja)
1� F (tja) �

f(tja)
1� F (tja)

�
;

where t is evaluated at t = t
C
(a). The term in front of the brackets is propor-

tional to the slope of tC(a), which is non-negative. By the MLRP, 1 � F (tja) is
log-supermodular in (a; t), implying that f(tja)

1�F (tja) is decreasing in a. Therefore, the

term in the brackets is negative. Hence, U(a; tC(a)) is weakly decreasing in a.
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The rest of the proof mirrors the argument in the proof of Proposition 3. The

cheapest way to induce any a > a is to use threshold tC(a). The optimal contract

that induces aFB gives the agent utility U(aFB; tC(aFB)). In comparison, inducing

any a 2 (a; aFB) weakly increases the agent�s utility and strictly decreases social

surplus, thus leaving strictly less surplus to the principal. Hence, the second-best

action does not belong to (a; aFB). The rest of the proposition follows.

Proof of Proposition 9. Assume �rst that �(a; t) = v(t)(1 � F (tja)). The �rst-
best threshold, tFB, is then between c and x. Given tFB, the �rst-best action, aFB,

then solves the problem

max
a
v(tFB)(1� F (tFBja))� a:

However, this is equivalent to maximizing the agent�s utility with respect to a, for a

�xed threshold tFB and a �xed bonus, b = v(tFB) > v(c) = 0. Hence, the optimal

action must necessarily belong to AC(tFB). Thus, (aFB; tFB) 2 I. Note that this
does not require F to be regular.

Assume next that �(a; t) =
R x
t
v (x) f(xja)dx and that F is regular. Note that the

�rst-best threshold is tFB = c. Any �rst-best action, aFB, solves

max
a

Z x

c

v (x) f(xja)dx� a

or

max
a

Z x

c

v0 (x) (1� F (xja)) dx� a:

As always, the �rst-best (aFB; tFB) is implementable in the second-best problem if

aFB is at one of the corners. Thus, consider the more interesting case in which aFB

is interior. The �rst- and second-order conditions are

�
Z x

c

v0 (x)Fa(xjaFB)dx = 1

�
Z x

c

v0 (x)Faa(xjaFB)dx � 0:

Recall that F is regular. By NUCx, the second-order condition necessitates that
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Faa(cjaFB) � 0. By de�nition,Z x

c

v0 (x)
�
1� F (xjaFB)

�
dx� aFB �

Z x

c

v0 (x) (1� F (xja)) dx� a for all a 2 [a; a]

Using the �rst-order condition, this can be rewritten asZ x

c

v0 (x)
�
F (xja)� F (xjaFB)

�
dx�

�
a� aFB

� Z x

c

v0 (x)Fa(xjaFB)dx � 0 for all for all a 2 [a; a];

orZ x

c

v0 (x)
�
F (xja)�

�
F (xjaFB) +

�
a� aFB

�
Fa(xjaFB)

��
dx � 0 for all a 2 [a; a]:

(6)

Thus, the tangent line to F (xj�) through aFB is �in expectation�below the function
F (xj�) at any possible alternative action. Now, (aFB; tFB) is implementable in the
second-best problem if and only if

F (cja0)�
�
F (cjaFB) +

�
a0 � aFB

�
Fa(cjaFB)

�
� 0 for all a 2 [a; a]: (7)

Thus, assume to the contrary that there exist some a0 6= aFB such that

F (cja0)�
�
F (cjaFB) +

�
a0 � aFB

�
Fa(cjaFB)

�
< 0:

Since Faa(cjaFB) � 0 it holds by NDCa that Faa(cja) � 0 for all a � aFB. This
rules out that a0 > aFB. Since a0 < aFB, NDCa further implies that

F (cja)�
�
F (cjaFB) +

�
a� aFB

�
Fa(cjaFB)

�
< 0:

In words, (aFB; c) is not implementable because the agent could pro�tably deviate

to a. Indeed, regularity implies that if the threshold increases from c to some higher

level, then the new contract is also not implementable because a deviation to a remains

pro�table. That is,

F (xja)�
�
F (xjaFB) +

�
a� aFB

�
Fa(xjaFB)

�
< 0 for all x 2 [c; x):

However, this violates (6). Thus, (7) must hold and it follows that (aFB; tFB) 2 I.
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Proof of Corollary 2. The corollary follows from the argument in the text that

tSB � tFB and aSB � aFB cannot be jointly optimal, as a consequence of Propositions
1 and 2.

Proof of Corollary 3. Given action aSB, threshold t = bt(aSB) dominates any
t < bt(aSB) from the principal�s point of view, since the latter has lower social surplus
and gives more rent to the agent. Hence, tSB � bt(aSB).
Proof of Corollary 4. Assume that the MLRP and CDFC hold and the principal

faces a budget constraint. If aSB > aFB then U(aSB; tB(aSB)) � U(aFB; t
B
(aFB)),

by the arguments in the proof of Proposition 3. Hence, the agent is better o¤.

Since (aFB; tB(aFB)) is feasible, (aSB; tB(aSB)) is in the principal�s interest only if

it makes her weakly better o¤. Hence, (aSB; tB(aSB)) is a Pareto improvement over

(aFB; t
B
(aFB)).

Assume next that F (xja) is regular. By the proof of Proposition 8, U(aSB; tC(aSB)) �
U(aFB; t

C
(aFB)) if aSB < aFB, and it follows by the same arguments as above that

(aSB; t
C
(aSB)) is a Pareto improvement over (aFB; tC(aFB)). If F (xja) is degener-

ate, then U(a; tC(a)) is constant by the argument leading to Proposition 7. Hence,

�(a; t
C
(a))�W (a; tC(a)) is proportional to S(a; tC(a)) and the last part of the corol-

lary follows.

Proof of Corollary 5. The corollary follows from Proposition 4.
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Appendix B: Details of Examples 4 and 5

Details of Example 4: Assume that �(a; t) = t(1 � F (tja)). To begin, consider
a more general speci�cation of the distribution function than in the main text. In

particular, assume that the agent�s performance is exponentially distributed with

mean h(a), where h0(a) > 0, h00(a) < 0, and h(0) = 0. Thus, F (xja) = 1 � e�
x

h(a) ,

x 2 [0;1), and where a belongs to an interval of the form [0; a]. The fact that

h0(�) > 0 implies that the MLRP and the NUCx hold.
Assume that h(a)e�1 � a. Since

max
t
�(a; t) = h(a)e�1;

the assumption implies that S(a; t) < 0 for all t. Thus, social surplus from a is

smaller than social surplus from a. This in turn means that a cannot be optimal in

the �rst-best or second-best problems. This corner can therefore be ignored. Assume

also that h0(0) > e. This implies that the �rst-best action exceeds a (see the next

paragraph). These assumptions are satis�ed if h(a) = a�, � 2 (0; 1) and a > e�1.
The �rst-best problem is to maximize �(a; t)� a or

max
a;t
te�

t
h(a) � a:

The necessary �rst-order condition for tFB reveals that tFB

h(aFB)
= 1. This implies that

the agent succeeds with probability 1�F (tFBjaFB) = e�1 regardless of the functional
form of h. Utilizing tFB = h(aFB) in the �rst-order condition for aFB yields the

conclusion that aFB is uniquely determined by h0(aFB) = e, which in turn pins down

tFB = h(aFB).

Turning to the implementability problem, note that

Faa(xja) =

"
� d

da

�
h0(a)

h(a)2

�
� x

�
h0(a)

h(a)2

�2#
xe�

x
h(a)

=

�
d

da

�
h(a)2

h0(a)

�
� x
��

h0(a)

h(a)2

�2
xe�

x
h(a) :

The �rst term inside the brackets is positive, by concavity of h. Thus, Faa(�ja) changes
sign as x increases. Hence, the CDFC is not satis�ed, but NUCx and CAT are. NDCa
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holds if and only if the �rst term is increasing in a, or in other words if and only if
h(a)2

h0(a) is convex. It can be veri�ed that this holds true if h(a) = a�, � 2 (0; 1), and
also if h(a) = ln(1 + a) or h(a) = 1� e�a.
Proceeding under the assumption that NDCa is satis�ed, any (a; t) on the bound-

ary of the feasible set is characterized by

F (tj0) = F (tja) + (0� a)Fa(tja):

Utilizing F (tj0) = 1, this can be solved for

t
C
(a) =

h(a)2

ah0(a)
;

which is tC(a) = 1
�
a� if h(a) = a�, � 2 (0; 1).

The principal�s second-best problem is to maximize �(a; t)�W (a; t), or

max
a;t
te�

t
h(a) � h(a)

2

h0(a)

1

t
;

subject to feasibility. It is surprisingly easy to solve the �rst-order conditions simul-

taneously if the feasibility constraint is ignored. Each �rst-order condition can be

solved for e�
t

h(a) . Equating these expressions and simplifying yields an equation that

is linear in t but non-linear in a. Thus, it is easy to solve for t, for any given a.

Substituting this back into one of the �rst-order conditions then makes it possible

to solve (either numerically or analytically) for a, and with it the accompanying t

value. Once a solution has been obtained, it can then be veri�ed whether it satis�es

the feasibility constraint. If it does not, then the second-best solution must be on the

boundary of the feasible set. In this case, the second-best solutions takes the form

(aSB; t
C
(aSB)), where aSB solves

max
a
�(a; t

C
(a))�W (a; tC(a)):

Note that the main role of the h(0) = 0 assumption is to provide a convenient an-

alytical characterization of tC(a). However, recall that since F (�j0) is degenerate in
this case, W (a; tC(a)) equals the �rst-best implementation costs, or W (a; tC(a)) = a

(see the discussion leading up to Proposition 7).
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Applying the procedure to the example where h(a) = a�, � 2 (0; 1), yields the
analytical solution in the main body of the text. N

Details of Example 5: Assume that F (xja) = 1�e�
x

a� , x 2 [0;1), a 2 [0; 1], and
� 2 (0; 1) as in Example 4, and that �(a; t) =

R x
t
v (x) f(xja)dx, with v(x) = x� c for

some c 2 (0;1). From Example 4, tC(a) = 1
�
a�. Note that tC(a) < c if a is small.

Recall that �(a; t) is increasing in t for t < c and thatW (a; t) is globally decreasing

in t on the feasible set. Thus, given some interior second-best action, aSB, the second-

best threshold must be no smaller than c whenever such a threshold is feasible. The

only way a smaller threshold can be optimal is when tC(a) < c, i.e. when aSB is

small. It will now be shown that the second-best action cannot be interior and in this

range.

Thus, consider implementing an action for which tC(a) < c, or a < (�c)
1
� . As men-

tioned, the optimal threshold is then t = tC(a). Thus, wage costs areW (a; tC(a)) = a,

while

�(a; t
C
(a)) =

Z 1

t
C
(a)

(x� c) 1
a�
e�

x

a� dx

= e�
1
�

�
1 + �

�
a� � c

�
:

The principal�s expected payo¤ is

�(a; t
C
(a))�W (a; tC(a)) = e�

1
�

�
1 + �

�
a� � c

�
� a;

which is evidently concave in a. The �rst derivative is

d
�
�(a; t

C
(a))�W (a; tC(a))

�
da

= e�
1
� (1 + �) a��1 � 1;

which is positive when a is small. It is increasing in a for all a < (�c)
1
� if c is so small

that c < 1
�

�
1
1+�

� �
��1
e

1
��1 = c. In this case, it cannot be optimal to induce an action

a < (�c)
1
� , since inducing a marginally higher action leads to higher expected payo¤.
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Thus, assume that c is large, or c � c. Then, the �rst-order condition is satis�ed at

a� =

 
e
1
�

1 + �

! 1
��1

;

at which point expected pro�t is

�(a�; t
C
(a�))�W (a�; tC(a�)) = e�

1
�

 
(1� �) 1

�

�
1

� + 1

� 1
��1

e
1

��1 � c
!

= e�
1
� ((1� �) c� c) ;

but this is negative for all c � c. Hence, this cannot be part of the second-best

solution because inducing a = 0 gives zero payo¤ to the principal. N
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Appendix C: Non-regular distribution functions

Example 7: Assume that F (xja) is the normal distribution with variance �2 and
mean h(a), with h0(a) > 0 and h00(a) � 0. An implication of h0(a) > 0 is that the

MLRP and the NUCx are satis�ed. The sign of Faa(xja) is determined by the sign
of 
(a; x) = h(a)�x

�
� h00(a)

h0(a)2 . The sign depends on x, implying that the CDFC is not

satis�ed. However, CAT is satis�ed. Whether NDCa is satis�ed depends on h(a) and

possibly �. It is su¢ cient that 
(a; x) is increasing in a for the NDCa to hold. This

is the case if h(a) = k � e�a for some k 2 R. Note that if 
(a; x) is increasing in a
for some �, then this remains the case as � decreases. Thus, the NDCa is more likely

to hold the less noisy the distribution is.

Next, assume that �2 = 1 and h(a) =
p
a, a 2 [0; 4]. Then, 
(a; x) = 1p

a
�

x +
p
a. For any x 2 R, this is minimized where a = 1 and it is therefore no

smaller than 2 � x. Consequently, if t � 2 then Faa(tj�) � 0 for all a 2 [0; 4] and all
actions can thus be implemented. However, if x > 2 then Faa(xj�) changes sign. For
instance, Faa(2:1j�) is zero at a = 0:5327 and a = 1:8773, and is positive-negative-

positive as a increases. The NDCa does not hold in this case. Indeed, it can be

veri�ed that the set of implementable actions with threshold t = 2:1 is AC(2:1) =

[0; 0:2776] [ [2:6013; 4]. Thus, there is a �hole�or gap in the set of actions that can
be implemented. Proposition 4 thus implies that tC(a) is u-shaped in a. Finally, if

t � 2:5 then Faa(tj�) is �rst-positive-then-negative. Then, the set of implementable
actions consists of a and a set of action close to (and including) a. This is a mirror

image of the conclusion in the third part of Proposition 6, which assumes NDCa.

The h(a) =
p
a setting is interesting for a couple of reasons. First, h0(0) = 1,

meaning that the marginal return in the agent�s expected performance to a small

increase in his action starting from zero is in�nite. This may or may not be realistic.

Second, the model is isomorphic to a setting in which h(a) = a but where the agent�s

cost function is c(a) = a2 rather than a. The latter speci�cation is common in e.g.

the literature on rank-order tournaments. N
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Appendix D: Contracting with granular failures

Fix an interior action a to implement and an interior threshold t. With granular

failures, performances below t can be observed. Thus, for performance x < t, let

w(x) denote the wage that is paid. Let b denote the wage that is paid if the threshold

is met. The principal�s problem is then to manipulate w(x) and b to minimize

W =

Z t

x

w(x)f(xja)dx+ b(1� F (tja));

subject to incentive compatibility and the limited liability constraint. For incentive

compatibility, the agent�s necessary �rst-order condition implies that

bFa(tja) =
Z t

x

w(x)fa(xja)dx� 1;

which means that

W =

Z t

x

w(x)f(xja)dx+ 1� F (tja)
Fa(tja)

�Z t

x

w(x)fa(xja)dx� 1
�

=

Z t

x

w(x)

�
1 +

1� F (tja)
Fa(tja)

fa(xja)
f(xja)

�
f(xja)dx� 1� F (tja)

Fa(tja)
:

Since Fa(tja) < 0, the MLRP implies that the sum inside the parenthesis is minimized
at x = t. Moreover, using the fact that 1 � F (tja) is log-supermodular due to the
MLRP, the sum can easily be shown to be positive at x = t. Thus, it is positive for any

x < t. Since the objective is to minimize W , it is therefore optimal to minimize w(x)

by equating it to the minimum wage. Thus, the candidate for the optimal contract

entails a �at wage for any x < t and a bonus that is paid only if the threshold is met.

This is a candidate contract in the usual sense that the agent�s �rst-order condition

is necessary but not su¢ cient for full incentive compatibility.
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